• Title/Summary/Keyword: K fertilizer

Search Result 4,441, Processing Time 0.029 seconds

Evaluation of Cd Adsorption Characteristic by Microplastic Polypropylene in Aqueous Solution (수중에서 미세플라스틱인 Polypropylene의 Cd 흡착특성 평가)

  • Eom, Ju-Hyun;Park, Jong-Hwan;Kim, Seong-Heon;Kim, Yeong-Jin;Ryu, Sung-Ki;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.83-88
    • /
    • 2019
  • BACKGROUND: In recent years, studies on microplastics have focused on their decomposition in the ocean. However, no studies have been reported on the interaction between microplastics and metal ions in aqueous solutions. Therefore, this study was conducted to evaluate the adsorption capacity of cadmium(Cd) by polypropylene (PP) in aqueous solution. METHODS AND RESULTS: Cadmium adsorption characteristics of PP in aqueous solution were evaluated through various conditions including initial Cd concentration(1.25-25 mg/L), contact time(0.5-24 h), initial pH(2-6) and temperature($20-50^{\circ}C$). Cadmium adsorption fit on PP was well described by Freundlich isotherm model with adsorption capacity(K) of 0.028. The adsorption amount of Cd by PP increased with increasing contact time, indicating that adsorption of PP by Cd was dominantly influenced by contact time. Especially, the removal efficiency of Cd by PP was highest at high temperature. However, the surface functional groups of PP before and after adsorption of Cd were similar, suggesting that adsorption of Cd by PP is not related to surface functional groups. CONCLUSION: Our study suggests that PP affects the behavior of Cd in aqueous solution. However, in order to clarify the specific relationship between microplastics and metal ions, mechanism research should be carried out.

Effect of Homemade Liquid Fertilizers on Chemical Property and Microbial Activity of Soil and Cucumber Growth (자가제조 액비처리가 토양 화학성과 미생물상 및 오이의 생장에 미치는 영향)

  • Jung, Ji-Sik;Jung, Seok-Kyu;Choi, Hyun-Sug
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.3
    • /
    • pp.15-25
    • /
    • 2019
  • The study was conducted to compare the chemical properties and microbial activity of soil and the crop productivity by applying homemade liquid fertilizers (LF) used in leading cucumber farms as well as to evaluate the eco-friendly LFs to substitute for a chemical fertilizer. Three homemade LFs, EM, starfish, and native microbes, and a chemical LF were regularly fertigated per three days during the growing season. Chemical LF contained the highest pH, EC (electrical conductivity), and concentrations of T-N, $P_2O_5$, K, Ca, and Mg, while the lowest EC level was observed for EM LF. Soil EC was the highest to the 3.0 dS/m for chemical LF-plots, with lowering soil pH, OM (organic matter), and Mg concentration. Soil chemical properties mostly increased in native microbes LF-plots. However, soil microbial properties were not significantly different among the LF treatment plots. OTU (operational taxonomic units), richness estimator, and diversity index of bacteria and fungi increased in the chemical LF and EM LF based on the pyrosequencing analysis. SPAD and PS II values on the treated-cucumber leaves were seasonally decreased from 32 to 60 days after transplanting, with the rapid decline observed at 45 days after transplanting. Number of leaves and crop height increased in the treatments with EM and native microbes LF. LF treated-cucumber crops were not significantly different for total fresh weight and fruit yield.

Effects of Phosphogypsum Application on Field Soil Properties and Yield and Quality of Garlic (Allium sativum L.) (부산석고 시용에 의한 밭 토양 특성과 마늘의 수량 및 품질에 미치는 영향)

  • Kim, Young-Nam;Cho, Ju Young;Yoon, Young-Eun;Choe, Hyoen Ji;Cheong, Mi Sun;Lee, Mina;Kim, Kwon-Rae;Lee, Yong Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.33-39
    • /
    • 2021
  • BACKGROUND: Globally, large amounts of phosphogypsum (PG), which is a by-product of the phosphate fertilizer production, is deposited in open areas. As PG contains calcium, phosphate, and sulphate, it can be used as a soil amendment in farmlands. This study was conducted to investigate the effects of PG application on properties of field soil and yield and quality of garlic (Allium sativum L.), and to seek appropriate level of PG application into the field. METHODS AND RESULTS: This experiment was conducted by applying PG at four different levels that were adjusted based on 65% calcium base saturation in the field soil: 0% (control), 50% (PG50, 100 kg/10a), 100% (PG100, 200 kg/10a), and 150% (PG150, 300 kg/10a). Following cultivation, soil electrical conductivity (EC), organic matter, available P and exchangeable Ca increased, whilst soil pH decreased. With increase in PG application level, soil EC and exchangeable Ca increased. PG application increased concentrations of water soluble Ca and SO4 across the soil profile, especially in PG150. The highest yield of garlic was found in PG100 treatment. The plant's uptake for N, P, Ca, and S increased by PG applications, but that for K decreased. Moreover, concentrations of S-related amino acids such as cysteine and methionine in garlic increased by PG applications. The increased content of nutrients and amino acids with PG supply might improve yield, quality, and favor of the crop. CONCLUSION: Overall, PG application at 200 kg/10a into a field had the best effect on improving soil fertility as well as yield and quality of garlic. Further studies are required to maximize efficiencies of PG supply in soil management and production of various crops.

Evaluation of Ammonia Emission Coefficient according to the use of Compound Fertilizers when Cultivating Apples and Pears in Orchards (과수원에서 사과 및 배 재배 시 복합비료 시용에 따른 암모니아 배출계수 평가)

  • Kim, Min-Wook;Hong, Sung-Chang;Yu, Seon-Young;Kim, Jin-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.366-372
    • /
    • 2021
  • BACKGROUND: Ammonia is known as a precursor to fine particulate matter, and according to CAPSS, annual ammonia emissions in the agricultural sector were 249,777 tons as of 2018, accounting for about 79.0% of Korea's total ammonia emissions. In particular, ammonia emissions from agricultural land increased by 19,566 tons (10.2%) compared to the previous year. The Ministry of Environment is setting emission statistics using the ammonia emission coefficient developed in Korea in 2008, but researchers in the agricultural field regard it as a coefficient that does not reflect the reality of Korea's agricultural environment. Accordingly, in order to develop ammonia emission coefficients from the cultivation of apples and pears, Korea's representative fruit type, test agricultural land was set in Iksan, Jeollabuk-do. METHODS AND RESULTS: This study attempted to obtain the ammonia emission coefficient by the treatment of the composite fertilizer (N-P2O5-K2O=12-7-9), and the flux was measured using a dynamic flow-through chamber method. As for the chamber, a total of 12 chambers were installed repeatedly in 4 zones and used to develop emission coefficients. Using compound fertilizers during fruit tree cultivation, the ammonia emission coefficient was evaluated as 10.4 kg NH3/ton for pears and 15.3 kg NH3/ton for apples. The reason why the ammonia emission coefficient according to the use of composite fertilizers was calculated higher for apple cultivation is believed to be due to the relatively high pH concentration of apple orchard soil. CONCLUSION(S): This study may provide basic data for upgrading the ammonia emission coefficient when using composite fertilizers in agricultural land. In the future, it might be necessary to upgrade the calculation of emissions through the development of ammonia and fine particulate matter emission coefficients considering the agricultural environment of Korea.

Studies on Cropping System of Upland Crop for the Sustainable Agriculture. (환경 농업 실천을 위한 밭작물 작부체계의 적용 조사)

  • Kang, Y.K.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.3 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • This study was carried out to find out basic data of the various cropping systems controlling the soil environment by analysing the historical literature, the changes of cropping system and the expected income of cropping system of the upland crop. The results were summerized as follows ; 1. According to the literature of 'Gumyangjoprok' and 'Sanlimgyungjae', published on 15 to 16 century in Korea, the cropping system of barley, soybean, red bean, and millet, etc. was done together both the 'kunkyong' and 'kanjong'. 2. Since 1970s the staple food grains had been self-sufficient and the setting up of the rice seedbed became faster. However, the cropping system of the rice after barley was rapidly fallen from 83.7% to 4.0% in 1990s. Furthermore, the food production and the rate of arable land utilization were also rapidly fallen. 3. The most prospective cropping system is considered the soybean after barley, and root & tuber crops considering with the soil environment. 4. The expecting income of cropping system ranged from 940,000won to l,970,000won per 10a but that of barley after soybean cropping for 610,000won, and that of barley-after mung bean cropping for 613,000won. 5. The maintenance and the preservation of agricultural environment shall become positive by practicing the Integrated Nutrients Management(INM), and the Integrated Pest Management(IPM) with control using of fertilizer and pesticide presenting the excessive loads to the soil environment.

Prospect of Sustainable Organic Tea Farming in Lwang, Kaski, Nepa (네팔 르왕지역의 지속적 유기농차 재배 방향)

  • Chang, K.J.;Huang, D.S.;Park, C.H.;Jeon, U.S.;Jeon, S.H.;Binod, Basnet.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.12 no.1
    • /
    • pp.137-150
    • /
    • 2010
  • Traditionally, like many people in mountain region of the Himalaya, the Lwang communities depend on mix of subsistence agriculture, animal husbandry, and seasonal migrant labor for their livelihoods. These traditional systems are characterized by low productivity, diverse use of available natural resources (largely for home consumption), limited markets, and some aversion for innovation. The potential to generate wealth through commerce has largely been untapped by these mountain residents and thus is undervalued in local and national economies. Introduction of organic tea farming is a part of Lwang community's several initiatives to break the vicious poverty cycle Annapurna Conservation Area Project (ACAP) played facilitating roles in all their efforts since beginning. In five years, the tea plantation emerged as a new means for secured a livelihood. This study aims to analyze the current practices in tea farming both in terms of farm management and soil nutrient status(technical) and the prosperity of the tea farmers (social). The technical aspect covers the soil and tea leaf analysis of various nutrients contents in the soil and tea leaf. Originally, the technical aspect of the study was not planned but later during the consultation with the advisor it was taken into consideration which added value to the research study. The sample were collected from different locations and analyzed on the field itself. The other part of the study i.e. the social aspect was done through questionnaire survey and focus group discussion. the tea farming provided them not only a new opportunity but also earned an identity in the region. This initiative was undertaken as a piloting measure. Now that the tea is in production with processing unit established locally, more serious consideration has to be given for better yield and economic prosperity. This research finding will help the community to analyze their efforts and make correction measures in tea garden management and application of fertilizer. It is also expected to fill up the gaps of knowledge and information required to reduce economic stresses and enhance capacity of farmers to make the tea farming a sustainable and beneficial business. The findings are expected to Sustainability of organic tea farming has direct impacts on biodiversity conservation compared to the other traditional farming practices that are more resource intensive. The study will also contribute to identify key action points required for reducing poverty while conserving environment and enhancing livelihoods

Evaluation of Growth and Yield on Transplanting time and Plant Density in ItalianRyegrass

  • Yun-Ho Lee;Hyeon-Soo Jang;Jeong-Won Kim;Bo-kyeong Kim;Deauk-Kim;Jong-Tak Youn
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.101-101
    • /
    • 2022
  • In recent years, due to climate change, the livestock industry has become more interested in the production of forage crops. In Korea, more than 74% of forage crops are cultivated in winter rice fields. In particular, Italian ryegrass (IRG) is depends on imports for more than 70% of its seeds. In generally, the IRG rapeseed cultivation method involves sowing from early October to mid-October by drill sowing seeding or spot seedling. However, the sowing period is delayed due to frequent rainfall during. And, same period require a lot of seeds. However, raising seedlings and transplanted IRG will overcome weather conditions and reduce the amount of seeds. This study was intended to be applied to the domestic IRG seed industry in the future through growth and quantity evaluation according to transplant time and planting density for the production of good quality IRG seeds in rice paddy fields. In this study, transplanting time (October 20, October 30, November 10) and planting density (50, 70, and 80) were cultivated at the National Institute of Crop Science in 2021. The amount of fertilizer applied was adjusted to (N-P2O5-K2O) 4.5-12-12 (kg/10a), and then 2.2(kg/10a) of nitrogen was added each year. For the growth survey, leaf area, canopy coverage, plant length, and seed yield were investigated. Along with the transplanting time, the plant length was higher on October 20 than on October 30 and November 10. On the other hand, leaf area index changes differed depending on the transplanting time and planting density, and were particularly high on October 20, 80 density and 70 density, but similar on October 30 and November 10. 1000 seed weight showed no difference with transplanting time and planting density. On the other hand, the seed yield was 215(kg/10a) for 80 density on October 20, 211(kg/10a) for 70 density, 118(kg/10a) for 50 density, and 80 density for October 30 and November 10. and 70 density did not differ. On the other hand, the 50 density on October 30 and November 10 were 164(kg/10a) and 147(kg/10a) respectively. As can be seen from this study, the earlier the transplant, the higher the seed yield. However, the 50 density was reduced in yield compared to the 70 density and 80 density.

  • PDF

Optimal Fertilizer Concentration (EC) for Fertigation Culture of Korean Cabbage in Highland (고랭지배추 관리재배시 적정 관비농도 (EC))

  • Jong Taek Suh;Ki Deog Kim;Chang Seok Kim;Sam nyu Jee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.54-54
    • /
    • 2020
  • 배추는 근본적으로 저온성 작물로 고온에 견디는 힘이 약할 뿐 아니라 가뭄이나 다습에도 취약하다. 그런데 2007년 이 후 매년 봄·초여름 가뭄이 지속되고 있으며, 예전처럼 강우에 의한 피해보다는 빈번히 나타나는 고온, 가뭄, 폭염 등 이상기상 환경조건에서 병 발생 및 생장지연으로 고랭지배추의 안정 생산이 위협받고 있다. 가뭄이 매년 지속됨에 따라 고랭지배추 재배지에서도 관수의 필요성이 인식되면서 관수를 실시하고 있으며, 대부분 스프링클러로 관수하고, 분수호스나 점적호스도 일부 이용하고 있으나 아직 토양수분, 토성이나 작물상태, 재배시기 등 환경요인을 고려한 과학적인 수분관리가 이루어지지 못하고 있어 고품질 안정생산을 위해서는 수분관리의 과학화가 필요한 실정이다. 관비재배는 적정한 비료를 필요한 위치에 공급하는 방식으로 비료의 효율을 높이면서 환경오염을 최소화하고, 비료과다 시용에 따른 환경오염 등을 회피할 수 있는 좋은 수단이다. 본 연구는 앞으로 고랭지배추 점적관수재배시 가뭄 극복과 효율적인 시비를 위한 적정 관비농도를 구명하고자 하였다. 배추품종은 수호를 이용하였으며 관비 EC농도(dS/m)는 0.4, 0.6, 0.8, 1.0, 1.2, 1.4 등 6처리를 두었으며 기준시비량은 N-P-K=32.0-7.8-19.8kg/10a로 하였다. 시험은 고령지농업연구소내 유리온실에서 4월 상순부터 5월 하순까지 직경 20cm 사각화분에 정식하여 재배하였다. 관비는 정식후 15일부터 7일 간격으로 5회 주었으며 관비량은 1회 화분당 65ml를 주었다. 화분은 완전임의배치 3반복으로 배치하였다. 초장은 정식후 38일까지 컸으며 엽장은 정식후 52일까지도 크는 경향을 보였다. 엽폭은 정식후 45일에 가장 많이 컸다. 초장, 엽장, 엽폭 모두 관비농도가 높을수록 커지는 경향이었으며 EC농도(dS/m) 1.4에서 가장 높게 나타났다. 주당 엽수와 주중도 EC농도가 높아질수록 많아졌으며 EC농도 1.4 처리에서 가장 많았고 그 다음이 EC 1.2 처리였다. 그러므로 관비 농도는 EC 1.4 dS/m 로 주는 것이 배추 생육에 좋을 것으로 생각된다.

  • PDF

Effect of Irrigation Starting Point of Soil on Chlorophyll Fluorescence, Stem Sap Flux Relative Rate and Leaf Temperature of Cucumber in Greenhouse (시설 토양 오이재배에서 관수개시점 처리가 광합성 형광반응, 줄기수액흐름 및 엽온에 미치는 영향)

  • An, Jin Hee;Jeon, Sang Ho;Choi, Eun Yong;Kang, Ho Min;Na, Jong Kuk;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.46-55
    • /
    • 2021
  • This experiment was conducted to investigate the effect on chlorophyll fluorescence, stem sap flux relative rate (SFRR) and leaf temperature of cucumber when irrigation is controlled using a soil moisture tensiometer. Cucumber (Cucumis sativus L.) 'Chungchun' was irrigated of 10-10-20 kPa and 20-10-10 kPa by soil starting point of irrigation at each growth stage. At the 66 days after treatment (DAT) of 736 to 854 W·m-2 and above 32℃, chlorophyll fluorescence variables (Fo, Fm, Fv/Fm) values showed significantly different between treatments. The Fo and Fv/Fm value in the daytime (10:30 am to 6:00 pm) at 66 DAT was higher in 20-10-10 kPa treatment than in 10-10-20 kPa treatment. The Fv/Fm value decreased when the leaf temperature was increased. There was no difference in leaf growth (length, width and area) at 28 and 66 DAT, but the chlorophyll content (SPAD value) was significantly higher in 20-10-10kPa treatment. SFRR and leaf temperature increased with light intensity and temperature increased. In both treatments, the SFRR started to increase sharply between 8 am and 9 am when the solar radiation is 170 W·m-2 or higher. The soil temperature of the treatments decreased after irrigation, that showed 31.0℃ at 10-10-20kPa and 28.5℃ at 20-10-10kPa on July 5 (820W·m-2 at 1 pm). However, there was no difference in SFRR, leaf temperature, temperature difference (leaf temperature - air temperature) and VPD between treatments. SFRR was significantly positive correlate with the leaf temperature (p < 0.01, r = 0.770). The SFRR and leaf temperature showed positive significant correlation with solar radiation, temperature, soil temperature, soil moisture content and VPD. There was a negative significant correlation with relative humidity and temperature difference.

Effect of Incorporation Times of Green Barley and Hairy Vetch on Rice Yield in Paddy Soil with Liquid Pig Manure (돈분액비를 시용한 녹비보리 및 헤어리베치의 혼입시기가 벼 수량에 미치는 영향)

  • Kang, Se-Won;Seo, Dong-Cheol;Lee, Sang-Gyu;Seo, Young-Jin;Park, Ju-Wang;Ryu, Jin-Hee;Kim, Min-Tae;Kang, Hang-Won;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.287-293
    • /
    • 2013
  • BACKGROUND: Soil incorporation of green manure crop(GMC) and liquid pig manure(LPM) is one of the methods for reduction of chemical fertilizer and the increase of crop yield. The objective of this study was to select optimal incorporation time of GMCs on growth and nutrient property in paddy soil treated LPM. METHODS AND RESULTS: The kinds of GMCs were Hordeum vulgare L.(green barley, GB) and Vicia villosa roth(hairy vetch, HV). The effects of GMCs on rice yield were investigated under different incorporation times of GMCs(LPM1: at 25 days before rice transplantation, LPM2: at 18 days before rice transplantation, LPM3: at 11 days before rice transplantation). In GB treatments, the biomass was greater in the order of $$LPM3{\geq_-}LPM2{\geq_-}LPM1$$. Contents of N, P and K ranged 1.21~1.28, 0.36~0.38 and 1.41~1.45%, respectively, regardless of incorporation times. The amounts of nutrient supply in GB treatments were higher in LPM1 than those in other treatment conditions. In GB treatments, rice yields in LPM1, LPM2 and LPM3 were 523, 525 and 526(increasing yield 3% than control) kg/10a, respectively. In HV treatments, the amounts of nutrient supply were higher in the order of $$LPM3{\geq_-}LPM2{\geq_-}LPM1$$. Rice yields were 530 kg/10a for LPM1, 531 kg/10a for LPM2, 535 (increasing yield 5% than control) kg/10a for LPM3 in HV treatments, respectively. CONCLUSION(s): The optimum incorporation time of green barley and hairy vetch was at 11 days before rice transplantation(LPM3) in paddy soil with liquid pig manure.