• Title/Summary/Keyword: Juvenile Pollock

Search Result 3, Processing Time 0.022 seconds

Size-class Estimation of the Number of Walleye Pollock Theragra chalcogramma Caught in the Southwestern East Sea during the 1970s-1990s (1970-1990년대 동해에서 어획된 명태(Theragra chalcogramma)의 체장에 따른 체급별 어획 마릿수 추정)

  • Kang, Sukyung;Park, Jung Ho;Kim, Suam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.4
    • /
    • pp.445-453
    • /
    • 2013
  • Walleye pollock Theragra chalcogramma fisheries in Korean waters have changed dramatically during the last three decades: the highest catches occurred in 1981, followed by continuous decreases through the 1990s, ending with a complete collapse of the population in the 2000s. The major spawning ground of walleye pollock is located in North Korean waters, and some juveniles (called nogari in Korean, <300 mm) migrate to the south for feeding and growth. Since the 1960s, Korean fishermen have often caught juveniles, and the weight (metric tons) of juvenile catch was recorded from 1975-1997. However, because the walleye pollock were not aged, the population age structure was not delineated. We developed a model to estimate the number of walleye pollock of each size class based on catch statistics of adults and juveniles, the catch proportion of each size class, and length and weight information on specimens collected by Danish-seine and drift-gill-net fisheries. The model results demonstrated that the recruitment size of walleye pollock was consistently within the 200-250mm size class, and the highest number of this size class occurred in 1981, although values greatly fluctuated interannually. The number of juvenile pollock was 10.4 times higher than that of adult pollock during 1975-1997. The total yield of juvenile pollock was 0.95 million tons, which was equivalent to about 68.2% of total pollock production. The number of juvenile pollock caught during the same period, however, was 16 billion, comprising about 91.2% of the total number caught. Such high fishing pressure on juvenile pollock is considered one of the main factors causing the collapse of the pollock population.

A Life Stage-based Model for Assessing the Walleye Pollock Gadus chalcogrammus Population in the East Sea (생활사 기반 모델을 이용한 동해 명태(Gadus chalcogrammus)의 개체군 평가)

  • Kim, Kyuhan;Sohn, Myoung Ho;Hyun, Saang-Yoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.1
    • /
    • pp.65-76
    • /
    • 2017
  • Since the late 1990s, walleye pollock Gadus chalcogrammus fisheries in Korean waters have been considered collapsed. Although many fisheries scientists suspect that the collapse might have been triggered by overexploitation of juvenile pollock or environmental changes, such conjectures have been neither tested nor investigated, partially because of limited data on the population. There has been no survey of the population, and the ages of fish in fishery catch have rarely been identified. Instead, fishery catch data from 1975-1997 included information about two life stages, 'juveniles and adults,' and data on catch-per-unit-effort (CPUE) during 1963-2007 and those on fish length and weight during 1965-2003 had been sporadically collected from commercial fisheries. To test hypotheses about the collapse of the pollock fisheries, we used a statistical linear model with juvenile CPUE as the response variable, and abiotic (e.g., water temperatures) and biotic factors [e.g., adult pollock, flatfishes (Pleuronectidae sp.), and sandfish (Arctoscopus japonicus) CPUEs] as the explanatory variables. The model results indicated that depletion of the pollock population was associated with both biotic (adult pollock and flatfishes abundance) and abiotic factors (mid-water temperatures in February and October). We further interpreted the results from ecological and biological perspectives, suggesting possible mechanisms.

Disease monitoring of Alaska pollock (Gadus chalcogrammus) based on growth stages (명태 (Gadus chalcogrammus)의 성장 단계별 질병 모니터링)

  • Kim, Kwang Il;Byun, Soon-Gyu;Kang, Hee Woong;Nam, Myung-Mo;Choi, Jin;Yoo, Hae-Kyun;Lee, Chu
    • Korean Journal of Ichthyology
    • /
    • v.29 no.1
    • /
    • pp.62-68
    • /
    • 2017
  • The Alaska pollock (Gadus chalcogrammus) belongs to the family Gadidae; it is a cold water fish, and has been developed as a novel aquaculture species in Korea. In this study, we describe ongoing surveillance for aquatic animal pathogens based on growth stages. We investigated bacterial flora in rearing water, and monitored pathogens; we also analyzed histopathological traits of abnormal fish. In rearing water, the total bacterial counts were $2.1{\times}10^3cfu/mL$ and Vibrio spp. (52%) were predominant in the larvae stage. In the juvenile and adult stages, the total bacterial counts were $3.4{\times}10^3$ and $3.2{\times}10^2cfu/mL$, respectively (with Pseudomonas sp. as the predominant species; 90% and 52%). This result revealed that the bacterial flora in rearing water changed depending on the feeding types. No virulent-bacteria or problematic viruses (VHSV, viral hemorrhagic septicemia virus; NNV, nervous necrosis virus; MBV, marine birnavirus) were detected from outwardly healthy fish using either culture or PCR assay. Some juveniles (less than 5%) had gas bubbles on the gill lamellae, degeneration of the corneal epithelium, and choroid gland degeneration, suggesting that these symptoms were caused by external injury and secondary infection by opportunistic bacteria. Disease management is important to cope with disease emergence in the novel aquaculture species Alaska pollock.