• 제목/요약/키워드: Junction Microarray

검색결과 8건 처리시간 0.031초

Deducing Isoform Abundance from Exon Junction Microarray

  • Kim Po-Ra;Oh S.-June;Lee Sang-Hyuk
    • Genomics & Informatics
    • /
    • 제4권1호
    • /
    • pp.33-39
    • /
    • 2006
  • Alternative splicing (AS) is an important mechanism of producing transcriptome diversity and microarray techniques are being used increasingly to monitor the splice variants. There exist three types of microarrays interrogating AS events-junction, exon, and tiling arrays. Junction probes have the advantage of monitoring the splice site directly. Johnson et al., performed a genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays (Science 302:2141-2144, 2003), which monitored splicing at every known exon-exon junctions for more than 10,000 multi-exon human genes in 52 tissues and cell lines. Here, we describe an algorithm to deduce the relative concentration of isoforms from the junction array data. Non-negative Matrix Factorization (NMF) is applied to obtain the transcript structure inferred from the expression data. Then we choose the transcript models consistent with the ECgene model of alternative splicing which is based on mRNA and EST alignment. The probe-transcript matrix is constructed using the NMF-consistent ECgene transcripts, and the isoform abundance is deduced from the non-negative least squares (NNLS) fitting of experimental data. Our method can be easily extended to other types of microarrays with exon or junction probes.

Evaluation of HER-2/neu Overexpression in Gastric Carcinoma using a Tissue Microarray

  • Rakhshani, Nasser;Kalantari, Elham;Bakhti, Hadi;Sohrabi, Masoud Reza;Mehrazma, Mitra
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7597-7602
    • /
    • 2014
  • Background: Amplification and overexpression of human epidermal growth factor receptor 2 (HER2/neu) oncogene has considerable prognostic value in breast and gastric cancers. This study aimed to evaluate the frequency, overexpression pattern, clinical significance, and concordance between the results for protein expression and gene amplification of HER-2/neu in gastric and gastro-esophageal junction carcinomas. Materials and Methods: In this study, 101 gastric tissue samples which were included in tissue microarray were immunohistochemically examined for overexpression of HER2/neu. Chromogenic in situ hybridization (CISH) was used for HER-2/neu amplification. The correlation of HER2/neu amplification with clinicopathological parameters was also assessed. In addition, concordance between CISH and IHC was detected. Results: This study demonstrated a significant difference in the overexpression of HER2/neu in gastric tumors. The overexpression of HER2/neu was significantly higher in intestinal type, poorly differentiated grade, large size ($5cm{\leq}$) and positive nodal involvement tumors (p-value=0.041, 0.015, 0.038 and 0.071, respectively). Also, amplification of HER2/neu according to CISH test, had a significant positive correlation with tumor size and tumor type (p-value=0.018 and 0.058, respectively).Concordance between CISH and IHC was 76.9% in 101 evaluable samples. Conclusions: IHC/CISH differences were attributed to basolateral membranous immunoreactivity of glandular cells resulting in incomplete membranous reactivity and/or a higher rate of tumor heterogeneity in gastric cancers compared to breast cancers. Therefore, this can be a potential marker for targeted therapy of malignant gastric tumors.

Identification of Hepatotoxicity Related Genes Induced by Hexachlorobenzne (HCB) in Human Hepatocellular Carcinoma (HepG2) Cells

  • Kim, Youn-Jung;Choi, Han-Saem;Song, Mee;Song, Mi-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.179-186
    • /
    • 2009
  • Hexachlorobenzene (HCB) is a bioaccumulative, persistent, and toxic pollutant. HCB is one of the 12 priority of Persistent Organic Pollutants (POPs) intended for global action by the United Nations Environment Program (UNEP) Governing Council. POPs are organic compounds that are resistant to environmental degradation through chemical, biological, and photolytic processes. Some of HCB is ubiquitous in air, water, soil, and biological matrices, as well as in major environmental compartments. HCB has effects on various organs such as thyroid, bone, skin, kidneys and blood cells and especially, revealed strong toxicity to liver. In this study, we identified genes related to hepatotoxiciy induced by HCB in human hepatocellular carcinoma (HepG2) cells using microarray and gene ontology (GO) analysis. Through microarray analysis, we identified 96 up- and 617 down-regulated genes changed by more than 1.5-fold by HCB. And after GO analysis, we determined several key pathways which known as related to hepatotoxicity such as metabolism of xenobiotics by cytochrome P450, complement and coagulation cascades, and tight junction. Thus, our present study suggests that genes expressed by HCB may provide a clue for hepatotoxic mechanism of HCB and gene expression profiling by toxicogenomic analysis also affords promising opportunities to reveal potential new mechanistic markers of toxicity.

Microarray Analysis of Oxygen-Glucose-Deprivation Induced Gene Expression in Cultured Astrocytes

  • Joo, Dae-Hyun;Han, Hyung-Soo;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권5호
    • /
    • pp.263-271
    • /
    • 2006
  • Since astrocytes were shown to play a central role in maintaining neuronal viability both under normal conditions and during stress such as ischemia, studies of the astrocytic response to stress are essential to understand many types of brain pathology. The micro array system permitted screening of large numbers of genes in biological or pathological processes. Therefore, the gene expression patterns in the in vitro model of astrocytes following exposure to oxygen-glucose deprivation (OGD) were evaluated by using the micro array analysis. Primary astrocytic cultures were prepared from postnatal Swiss Webster mice. The cells were exposed to OGD for 4 hrs at $37^{\circ}C$ prior to cell harvesting. From the cultured cells, we isolated mRNA, synthesized cDNA, converted to biotinylated cRNA and then reacted with GeneChips. The data were normalized and analyzed using dChip and GenMAPP tools. After 4 hrs exposure to OGD, 4 genes were increased more than 2 folds and 51 genes were decreased more than 2 folds compared with the control condition. The data suggest that the OGD has general suppressive effect on the gene expression with the exception of some genes which are related with ischemic cell death directly or indirectly. These genes are mainly involved in apoptotic and protein translation pathways and gap junction component. These results suggest that microarray analysis of gene expression may be useful for screening novel molecular mediators of astrocyte response to ischemic injury and making profound understanding of the cellular mechanisms as a whole. Such a screening technique should provide insights into the molecular basis of brain disorders and help to identify potential targets for therapy.

Functional Gene Analysis to Identify Potential Markers Induced by Benzene in Two Different Cell Lines, HepG2 and HL-60

  • Kim, Youn-Jung;Song, Mi-Kyung;Sarma, Sailendra Nath;Choi, Han-Saem;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.183-191
    • /
    • 2008
  • Volatile organic compounds (VOCs) are common constituents of cleaning and degreasing agents, paints, pesticides, personal care products, gasoline and solvents. And VOCs are evaporated at room temperature and most of them exhibit acute and chronic toxicity to human. Benzene is the most widely used prototypical VOC and the toxic mechanisms of them are still unclear. The multi-step process of toxic mechanism can be more fully understood by characterizing gene expression changes induced in cells by toxicants. In this study, DNA microarray was used to monitor the expression levels of genes in HepG2 cells and HL-60 cells exposed to the benzene on IC20 and IC50 dose respectively. In the clustering analysis of gene expression profiles, although clusters of HepG2 and HL-60 cells by benzene were divided differently, expression pattern of many genes observed similarly. We identified 916 up-regulated genes and 1,144 down-regulated genes in HepG2 cells and also 1,002 up-regulated genes and 919 down-regulated genes in HL-60 cells. The gene ontology analysis on genes expressed by benzene in HepG2 and HL-60 cells, respectively, was performed. Thus, we found some principal pathways, such as, focal adhesion, gap junction and signaling pathway in HepG2 cells and toll-like receptor signaling pathway, MAPK signaling pathway, p53 signaling pathway and neuroactive ligand-receptor interaction in HL-60 cells. And we also found 16 up-regulated and 14 down-regulated commonly expressed total 30 genes that belong in the same biological process like inflammatory response, cell cycle arrest, cell migration, transmission of nerve impulse and cell motility in two cell lines. In conclusion, we suggest that this study is meaningful because these genes regarded as strong potential biomarkers of benzene independent of cell type.

마우스세포주 Balb/c 3T3 A31-1-1에서 Epigallocatechin gallate(EGCG)의 세포암화 억제효과에 대한 유전자발현 해석 (Genome-based Gene Expression Analysis of EGCG-mediated Cell Transformation Suppression Effect in Mouse Cell line Balb/c 3T3 A31-1-1)

  • 정기경;서수경;김태균;박문숙;이우선;박순희;김승희;정해관
    • 한국환경성돌연변이발암원학회지
    • /
    • 제26권4호
    • /
    • pp.125-132
    • /
    • 2006
  • Previous studies showed that epigallocatechin gallate(EGCG) have substantial effects of suppressing the N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)-initiated cell transformation process on the bases of foci formation frequency and loss of anchorage dependency. In this study we tried to clarify the molecular mechanism of suppressing the cell transformation process. Mouse cell line balb/c 3T3 A31-1-1 was exposed 2 days to MNNG followed by 15 days 12-O-tetradecanoylphorbol-13-acetate(TPA) treatment for our transformation process. EGCG was added after the time point of 24 hours exposure to TPA and incubated for 19 days. 2029 genes were selected in our transformation process that showed fold change value of 1.5 or more in the microarray gene expression analysis covering the mouse full genome. These genes were found to be involved mainly in the cell cycle pathway, focal adhesion, adherens junction, TGE-$\beta$ signaling, apoptosis, lysine degradation, insulin signaling, ECM-receptor interaction. Among the genes, we focused on the 631 genes(FC>0.5) reciprocally affected by EGCG treatment. Our study suggest that EGCG down-regulate the gene expressions of up stream signaling factors such as nemo like kinase with MAPK activity and PI3-Kinase, Ras GTPase and down stream factors such as cyclin D1, D2, H, T2, cdk6.

  • PDF

조각자(皂角刺)가 estradiol valerate로 유발된 백서(白鼠)의 다낭성 난소에 미치는 영향 (Effects of Gleditsiae Spina(GS) on the Polycystic Ovary Induced by Estradiol Valerate in Rats)

  • 구희준;조성희
    • 대한한방부인과학회지
    • /
    • 제23권2호
    • /
    • pp.71-84
    • /
    • 2010
  • Purpose: In the theory of traditional medicine, Glenditsia spina(GS) can resolve carbuncle, relive swelling, dispel wind and destroy parasites. This study was designed to investigate the effects of GS on gene expression of ovarian tissue in polycystic ovary syndrome(PCOS) rats. Methods: In this experiment, female rats injected with a single dose of 2 mg estradiol valerate(EV) and GS was given for 5 weeks. The genetic profile for the effects on ovarian tissue in PCOS rats was measured using microarray technique, and the functional analysis on these genes was conducted. Results: 985 genes were increased in control and restored to normal level in GS group. (B), 733 genes were decreased in control group and restored to normal level in GS group. (F). Metabolic pathways related in B group genes were Graft-versus-host disease, Allograft rejection, Autoimmune thyroid disease, Cytokine-cytokine receptor interaction, Small cell lung cancer, Type I diabetes mellitus. Metabolic pathways related in F group genes were Antigen processing and present, Adipocytokine signalling pathway, Focal adhesion, ECM-receptor interaction, Pancreatic cancer, Notch signalling pathway, Tight junction. The network of total protein interactions was measured using cytoscape program, and some key molecules, such as c-Fos, c-Myc, ABL1 related in B group, MAPK8, RASA1, CALR related in F group that can be used for elucidation of therapeutical mechanism of medicine in future were identified. Conclusion: These results suggest possibility of GS as anti-cancer and anti-hyperplasia drug in PCOS. In addition, the present author also suggests that related mechanisms are involved in suppression of proto-oncogene such as c-Fos, c-Myc and ABL1, and in regulation of cell cycle such as RASA1.

Vitamin D maintains E-cadherin intercellular junctions by downregulating MMP-9 production in human gingival keratinocytes treated by TNF-α

  • Oh, Changseok;Kim, Hyun Jung;Kim, Hyun-Man
    • Journal of Periodontal and Implant Science
    • /
    • 제49권5호
    • /
    • pp.270-286
    • /
    • 2019
  • Purpose: Despite the well-known anti-inflammatory effects of vitamin D in periodontal health, its mechanism has not been fully elucidated. In the present study, the effect of vitamin D on strengthening E-cadherin junctions (ECJs) was explored in human gingival keratinocytes (HGKs). ECJs are the major type of intercellular junction within the junctional epithelium, where loose intercellular junctions develop and microbial invasion primarily occurs. Methods: HOK-16B cells, an immortalized normal human gingival cell line, were used for the study. To mimic the inflammatory environment, cells were treated with tumor necrosis factor-alpha ($TNF-{\alpha}$). Matrix metalloproteinases (MMPs) in the culture medium were assessed by an MMP antibody microarray and gelatin zymography. The expression of various molecules was investigated using western blotting. The extent of ECJ development was evaluated by comparing the average relative extent of the ECJs around the periphery of each cell after immunocytochemical E-cadherin staining. Vitamin D receptor (VDR) expression was examined via immunohistochemical analysis. Results: $TNF-{\alpha}$ downregulated the development of the ECJs of the HGKs. Dissociation of the ECJs by $TNF-{\alpha}$ was accompanied by the upregulation of MMP-9 production and suppressed by a specific MMP-9 inhibitor, Bay 11-7082. Exogenous MMP-9 decreased the development of ECJs. Vitamin D reduced the production of MMP-9 and attenuated the breakdown of ECJs in the HGKs treated with $TNF-{\alpha}$. In addition, vitamin D downregulated $TNF-{\alpha}$-induced nuclear factor kappa B ($NF-{\kappa}B$) signaling in the HGKs. VDR was expressed in the gingival epithelium, including the junctional epithelium. Conclusions: These results suggest that vitamin D may avert $TNF-{\alpha}$-induced downregulation of the development of ECJs in HGKs by decreasing the production of MMP-9, which was upregulated by $TNF-{\alpha}$. Vitamin D may reinforce ECJs by downregulating $NF-{\kappa}B$ signaling, which is upregulated by $TNF-{\alpha}$. Strengthening the epithelial barrier may be a way for vitamin D to protect the periodontium from bacterial invasion.