• Title/Summary/Keyword: Junction Device

Search Result 426, Processing Time 0.029 seconds

The Design of High-Speed Transistor Junction Technology (초고속 소자를 위한 Junction Technology 연구)

  • 이준하;이흥주;문원하
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.2
    • /
    • pp.17-20
    • /
    • 2003
  • The current drive in an MOSFET is limited by the intrinsic channel resistance. All the other parasitic elements in a device structure playa significant role and degrade the device performance. These other resistances need to be less than 10%-20% of the channel resistance. To achieve the requirements, we should investigate a methodology of separation and quantification of those resistances. In this paper, we developed the extraction method of resistances using calibrated TCAD simulation. The resistance of the extension region is also partially determined by the formation of a surface accumulation region that forms under the gate in the tail region of the extension profile.

  • PDF

A study on the breakdown characteristics of power p-n junction device using field limiting ring and side insulator wall (전계제한테와 측면 유리 절연막 사용한 전력용 p-n 접합 소자의 항복 특성 연구)

  • 허창수;추은상
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.386-392
    • /
    • 1996
  • Zinc-Borosilicate is used as a side insulator wall to make high breakdown voltage with one Field Limiting Ring in a power p-n junction device in simulation. It is known that surface charge density can be yield at the interface of Zinc-Borosilicate glass / silicon system. When the glass is used as a side insulator wall, surface charge varied potential distribution and breakdown voltage is improved 1090 V under the same structure.The breakdown voltage under varying the surface charge density has a limit value. When the epitaxial thickness is varied, the position of FLR doesn't influence to the breakdown characteristic not only under non punch-through structure but also under punch-through structure. (author). 7 refs., 12 figs., 2 tabs.

  • PDF

Characterization of Channel Electric Field in LDD MOSFET (LDD MOSFET채널 전계의 특성 해석)

  • 한민구;박민형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.401-415
    • /
    • 1989
  • A simple but accurate analytical model for the lateral channel electric field in gate-offset structured Lightly Doped Drain MOSFET has been developed. Our model assumes Gaussian doping profile, rather than simple uniform doping, for the lightly doped region and our model can be applied to LDD structures where the junction depth of LDD is not identical to the heavily doped drain. The validity of our model has been proved by comparing our analytical results with two dimensional device simulations. Due to its simplicity, our model gives a better understanding of the mechanisms involved in reducing the electric field in the LDD MOSFET. The model shows clearly the dependencies of the lateral channel electric field on the drain and gate bias conditions and process, design parameters. Advantages of our analytical model over costly 2-D device simulations is to identify the effects of various parameters, such as oxide thickness, junction depth, gate/drain bias, the length and doping concentration of the lightly doped region, on the peak electric field that causes hot-electron pohenomena, individually. Our model can also find the optimum doping concentration of LDD which minimizes the peak electric field and hot-electron effects.

  • PDF

Analysis of Lattice Temperature in Super Junction Trench Gate Power MOSFET as Changing Degree of Trench Etching

  • Lee, Byeong-Il;Geum, Jong Min;Jung, Eun Sik;Kang, Ey Goo;Kim, Yong-Tae;Sung, Man Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.263-267
    • /
    • 2014
  • Super junction trench gate power MOSFETs have been receiving attention in terms of the trade-off between breakdown voltage and on-resistance. The vertical structure of super junction trench gate power MOSFETs allows the on-resistance to be reduced compared with conventional Trench Gate Power MOSFETs. The heat release of devices is also decreased with the reduction of on-resistance. In this paper, Lattice Temperature of two devices, Trench Gate Power MOSFET and Super junction trench gate power MOSFET, are compared in several temperature circumstance with the same Breakdown Voltage and Cell-pitch. The devices were designed by 100V Breakdown voltage and measured from 250K Lattice Temperature. We have tried to investigate how much temperature rise in the same condition. According as temperature gap between top of devices and bottom of devices, Super junction trench gate power MOSFET has a tendency to generate lower heat release than Trench Gate Power MOSFET. This means that Super junction trench gate power MOSFET is superior for wide-temperature range operation. When trench etching process is applied for making P-pillar region, trench angle factor is also important component. Depending on trench angle, characteristics of Super junction device are changed. In this paper, we focus temperature characteristic as changing trench angle factor. Consequently, Trench angle factor don't have a great effect on temperature change.

Fabrication and Characteristics of a Varactor Diode for UHF TV Tuner Operated within Low Tuning Voltage (저전압 UHF TV 튜너용 바렉터 다이오드의 제작 및 특성)

  • Kim, Hyun-Sik;Moon, Young-Soon;Son, Won-Ho;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.185-191
    • /
    • 2014
  • The width of depletion region in a varactor diode can be modulated by varying a reverse bias voltage. Thus, the preferred characteristics of depletion capacitance can obtained by the change in the width of depletion region so that it can select only the desirable frequencies. In this paper, the TV tuner varactor diode fabricated by hyper-abrupt profile control technique is presented. This diode can be operated within 3.3 V of driving voltage with capability of UHF band tuning. To form the hyperabrupt profile, firstly, p+ high concentration shallow junction with $0.2{\mu}m$ of junction depth and $1E+20ions/cm^3$ of surface concentration was formed using $BF_2$ implantation source. Simulation results optimized important factors such as epitaxial thickness and dose quality, diffusion time of n+ layer. To form steep hyper-abrupt profile, Formed n+ profile implanted the $PH_3$ source at Si(100) n-type epitaxial layer that has resistivity of $1.4{\Omega}cm$ and thickness of $2.4{\mu}m$ using p+ high concentration Shallow junction. Aluminum containing to 1% of Si was used as a electrode metal. Area of electrode was $30,200{\mu}m^2$. The C-V and Q-V electric characteristics were investigated by using impedance Analyzer (HP4291B). By controlling of concentration profile by n+ dosage at p+ high concentration shallow junction, the device with maximum $L_F$ at -1.5 V and 21.5~3.47 pF at 0.3~3.3 V was fabricated. We got the appropriate device in driving voltage 3.3 V having hyper-abrupt junction that profile order (m factor) is about -3/2. The deviation of capacitance by hyper-abrupt junction with C0.3 V of initial capacitance is due to the deviation of thermal process, ion implantation and diffusion. The deviation of initial capacitance at 0.3 V can be reduced by control of thermal process tolerance using RTP on wafer.

The Research on Trench Etched Field Ring with Dual Ion-Implantation for Power Devices (이중 이온주입 공정을 이용한 트렌치 필드링 설계 최적화 및 전기적 특성에 관한 연구)

  • Yang, Sung-Min;Oh, Ju-Hyun;Bae, Young-Seok;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.364-367
    • /
    • 2010
  • The dual ion-implantation trench edge termination techniques were investigated and optimized using a two-dimensional device simulator. By trenching the field ring site which would be dual implanted, a better blocking capability can be obtained. The results show that the p-n junction with dual implanted junction field-ring can accomplish nearly 20% increase of breakdown voltage in comparison with the conventional trench field-rings. The fabrication is relatively difficult. But the trench etched field ring with dual ion-implantation is surpassed for breakdown voltage and consume same area and extensive device simulations as well as qualitative analysis confirm these conclusions.

Characteristics Modeling of Junction Barrier Schottky Diodes for ultra high breakdown voltage with 4H-SiC substrate (탄화규소(4H) 기판의 초고내압용 접합 장벽 쇼트키 다이오드의 특성 모델링)

  • Song, Jae-Yeol;Bang, Uk;Kang, In-Ho;Lee, Yong-Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.200-203
    • /
    • 2007
  • Devices of junction barrier schottky(JBS) structure using 4H-SiC substrates with wide energy band gaps was designed and fabricated. As a measurement results, the device of reverse I-V characteristics was shown as more than 1000 V, its design optimum length of p-grid was $3{\mu}m$ space. In this paper, I-V characteristics was modeled by using of device fabricated process conditions parameters and it was extracted that the I-V property parameters, and it was compared and analyzed with between device parameters and model parameters.

  • PDF