• Title/Summary/Keyword: Joystick

Search Result 166, Processing Time 0.033 seconds

Implementation of a Remote Peg-in-Hole Operation using a Two Degrees of Freedom Force-Reflective Joystick

  • Sung K. An;Seung J. Han;Lee, Jang M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.340-345
    • /
    • 1998
  • A virtual reality system is implemented for the operator supervising a robot's operation at a remote site. For this implementation, a two D.O.F force-reflective joystick is designed to reflect the force/torque measured at the end of robotic manipulator and to generate the motion command for the robot by the operator using this joystick. In addition, the visual information that is captured by a CCD camera, is transmitted to the remote operator and is displayed on a CRT monitor. The operator who is holding the force reflective joystick and watching the CRT monitor can resolve unexpected problems that the robot confronts with. That is, the robot performs the tasks autonomously unless it confronts with unexpected events that can be resolved by only the operator. To demonstrate the feasibility of this system, a remote peg-in-hole operation is implemented and the experimental data are shown.

  • PDF

Development of a Velocity Ellipse Navigation Algorithm in Virtual Environments Using Force Feedback (힘 반향을 이용한 속도타원 가상환경 네비게이션 알고리즘 개발)

  • Yoon I.B.;Chai Y.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.277-285
    • /
    • 2004
  • In this paper, a 2 DOF haptic yawing joystick for use as the navigation input device in virtual environments is introduced. The haptic yawing joystick has 360° range for yawing motion and ±100° for pitching motion. The device can support weights of up to 26N for χ axis and 10N for axis with 10kHz of sampling rate. The size of the haptic yawing joystick is so small that it can be assembled on armrest of an arm chair and has relatively larger work space than other conventional 2 DOF joysticks. For the haptic yawing joystick, an ellipse navigation algorithm using the user's velocity in the virtual navigation is proposed. The ellipse represents the velocity of the user. According to the velocity of the navigator, the ellipse size is supposed to be changed. Since the path width of navigation environments is limited, the ellipse size is also limited. The ellipse navigation algorithm is tested in 2 dimensional virtual environments. The test results show that the average velocity of the navigation with the algorithm is faster than the average navigation velocity without the algorithm.

LOS Moving Algorithm Design of Electro-Optical Targeting Pod for Joystick Command (조이스틱 명령에 따른 Electro-Optical Targeting Pod의 LOS 이동 알고리즘 설계)

  • Seo, Hyoungkyu;Park, Jaeyoung;Ahn, Jung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1395-1400
    • /
    • 2018
  • EO TGP(Electro-Optical Targeting Pod) is an optical tracking system which has various functions such as target tracking and image stabilization and LOS(Line of Sight) change. Especially, it is very important to move the LOS into a interest point for joystick command. When pilot move joystick in order to observe different scene, EO TGP gimbals should be operated properly. Generally, most EOTS just operate corresponding gimbal for joystick command. For example, if pilot input horizontal command in order to observe right hand screen, it just drive azimuth gimbal at any position. But in the screen, the image dosen't move in a horizontal direction because gimbal structure is Euler angle. And image rotation is occurred by elevation gimbal angle. So we need to move Pitch gimbal. So in the paper, we designed LOS moving algorithm which convert LOS command to gimbal velocity command to move LOS properly. We modeled a differential kinematic equation and then change the joystick command into velocity command of gimbals. This algorithm generate velocity command of each gimbal for same horizontal direction command. Finally, we verified performance through MATLAB/Simulink.

Development of Force Reflecting Joystick for Feild Robot (필드로봇을 위한 힘방향 조이스틱 개발)

  • 송인성;안경관;양순용;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.357-360
    • /
    • 1997
  • Abstract: In teleoperation field robotic system such as hydraulically actuated robotic excavator, the maneuverability and convenience is the most important part in the operation of robotic excavator. Particularly the force information is important in dealing with digging and leveling operation in the teleoperated excavator. Excavators are also subject to a wide variation of soil-tool interaction forces. This paper presents a new force reflecting joystick in a velocity-force type bilateral teleoperation system. The master system is electrical joystick and the slave system IS hydraulically actuated cylinder with linear position sensor. Particularly Pneumatic motor is used newly in the master joystick for force reflection and the information of the pressure of salve cylinder is measured and utilized as the force feedback signal. Also force-reflection gain greatly affects the excavation performance of a hydraulically actuated robotic system and it is very difficult to determine it appropriately since slave excavator contacts with various environments such as from soft soil to rock. To overcome this, this paper proposes a force-reflection gain selecting algorithm based on artificial neural network and fuzzy logic.

  • PDF

The Construction of a Remote Game Control System By the Power Line Communication (전력선통신을 이용한 원격 게임제어 시스템의 구성)

  • Lee, Kyung-Mog
    • Journal of Korea Game Society
    • /
    • v.7 no.1
    • /
    • pp.53-58
    • /
    • 2007
  • In this paper, a game control system was constructed, in which a game was controlled by a remote joystick connected with a power line by the power line communication (PLC) method. The structure of the system was that the connection line between the remote joystick and a PC, and the PC and an audio play device was the home power line. And, the communication data rate between them was 2400 bps. The Polling communication technique was used for the PC to read the joystick's control commands, and to send some acoustic informations to the receiver PLC device. A game was programmed, in which an aircraft was moved according to the joystick's left, right, up, and, down direction, and was shooting its missile after the joystick's shooting button was pushed. The communication delay of about 100 msec between them didn't cause any big problem in playing the game.

  • PDF

Development of Force Reflecting Joystick for Field Robot

  • Song, In-Sung;Ahn, Kyung-Kwan;Yang, Soon-Yong;Lee, Byung-Ryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.132.5-132
    • /
    • 2001
  • In teleoperation field robotic system such as hydraulically actuated robotic excavator, the maneuverability and convenience is the most important part in the operation of robotic excavator. Particularly the force information is important in dealing with digging and leveling operation in the teleoperated excavator. Excavators are also subject to a wide variation of soil-tool interaction forces. This paper presents a new force reflecting joystick in a velocity-force type bilateral teleoperation system. The master system is electrical joystick and the slave system is hydraulically actuated cylinder with linear position sensor. Particularly Pneumatic motor is used newly in the master joystick for force reflection and the information of the pressure of salve cylinder is measured and utilized as the force feedback signal. Also force-reflection gain greatly affects the ...

  • PDF

Haptic Experimentation for Single Degree of Freedom Force Output Joystick using Hybrid Motor/Brake Actuator

  • Jinung An;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.171.1-171
    • /
    • 2001
  • This paper describes the design and implementation of a new type of a force reflective joystick. It has single degree of freedom that is actuated by motor and brake pair. The use of motor and brake allows various objects to be simulated without the stability problem and related safety issues involved with high torque motors only. The joystick performance is measured by its ability to simulate various test objects. Simple test objects are modeled as a benchmark test of the system´s performance and to evaluate different control approaches for hybrid motor/brake actuator. The force output joystick is capable of simulating forces in a variety of virtual environments. This device demonstrates the effectiveness of a hybrid motor/brake haptic actuator.

  • PDF

A remote control robot manipulator using force feedback joystick (로봇 매니퓰레이터 원격 제어)

  • Kim, In-Soo;Hyun, Woong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1823-1824
    • /
    • 2008
  • We propose a remote controlled robot manipulator using force feedback joystick. User can control easily 5 d.o.f robot manipulator in 3 demensional space using general joystick. A force sensor attached in developed gripper sends signal to main robot controller so as to know gripper grasp the object. The signal also sent to user through force feedback joystick. We designed a dexterous 5 d.o.f robot manipulator analysis the kinematics and inverse kinematics. The robot was simply developed using serial RC motor. As a main robot controller, we use 32bit MPU(AT91SAM7256) and micro C/OS. To show the validity of our developed robot, a several experiments were demonstrated.

  • PDF

Design of Teleoperation System for Ackermann-steering Mobile Robot considering Driving Stability (애커먼 조향 이동로봇의 주행 안정성을 고려한 원격운용 시스템 설계)

  • Lee, Dong-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.109-114
    • /
    • 2022
  • This paper proposes a 2D joystick and LoRa-based teleoperation system for the Ackermman steering mobile robot. The proposed joystick mapping algorithm reduces the linear speed of the robot when the joystick is steered in the direction of the maximum steering angle in the high-speed driving state of a mobile robot to reduce the risk of rollover. The LoRa-based remote operation system is designed for remote operation of mobile robots that require long range communication with relatively little data transmission and low power. The proposed system is implemented and the experimental results demonstrate the effectiveness of the teleoperation system with respect to the stability of communication strength and the robot motion.