• Title/Summary/Keyword: Journal of Wood Science

Search Result 3,968, Processing Time 0.026 seconds

Physicochemical Properties and Plant Coverage of Wood-based Growing Media on Slopes

  • Moon, Hong-Duk;Ha, Si Young;Jung, Ji Young;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.6
    • /
    • pp.645-655
    • /
    • 2018
  • The use of wood waste as substrate for plant growth exemplifies a strategy for turning waste into resources. The overall objective of this research was to evaluate the effects of wood-based growing media on plant cover in a slope area. Moreover, we tried to find out what physicochemical properties affect plant cover on a slope. For treatments, we tested natural soil, soil mixed with wood-based growing medium (1:1, w/w), and wood-based growing medium by itself. Physical and chemical characteristics were evaluated after four months from the date of treatment application to the experimental slope site. Soil coverage with seedlings of Lespedeza cyrtobotrya was measured for plant growth evaluation. Physicochemical properties were altered by mixing the natural soil with wood-based growing medium. Particularly, soil moisture and organic matter contents were significantly changed in soils treated with wood-based growing medium compared to soil alone. We confirmed that plant coverage rate was high when wood-based growing medium was mixed with the natural soil. There was a significant linear relationship between moisture content and CEC (Cation Exchange Capacity) of all growth media tested and plant coverage. This result was expected, as moisture content tends to increase with organic matter content, such as in wood-based growing medium. In conclusion, the high moisture content of the wood-based growing medium was considered effective for plant growth in the experimental slope site, and this wood-based growing medium provides a means to improve the harmony between the slope and the surrounding environment.

Wood Properties and Residual Creosote Oil of Disused Railway Wood Ties (철도 폐침목의 크레오소오트유 잔류 및 재질 특성)

  • Lee, Jong-Shin;Park, Jong-Young
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.465-469
    • /
    • 2010
  • In order to develop effective recycling technologies of disused railway wood ties, wood properties and residual creosote oil of wood ties were investigated. Among the total 50 wood ties, 32 wood ties were identified as tropical hardwood tree, such as, Keruing (Dipterocarpus spp.), Kempas (Koompassia malaccensis), Kapur (Dryobalanops spp.) Naytoh (Palaquium rostratum), and so on. Disused wood ties showed mostly sound structure without degradation of cell walls by decay fungi. Disused wood ties showed high strengths of bending and compressive parallel to grain because degradation of wood properties was hardly occurred in use under exterior condition. Disused railway wood ties had relatively poor depth of penetration and residual of creosote oil because of refractory wood structures. These results suggest that disused railway wood ties may be useful as recycling wood wastes.

Anatomical Comparison of Compression, Opposite, and Lateral Woods in New Zealand Rimu (Dacrydium cupressinum Lamb.)

  • Eom, Young-Geun;Butterfield, Brian G.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.1-13
    • /
    • 2001
  • Compression, lateral, and opposite woods in the stem and branch of rimu (Dacrydium cupressinum Lamb.), a softwood species indigenous to New Zealand, were described and compared in the anatomical aspects. Qualitatively, growth rings were wide in the compression wood, intermediate in the lateral wood, and narrow in the opposite wood. Tracheid transition from early wood to late wood was very gradual in the compression wood but was more abrupt in both the lateral and opposite woods. When viewed transversely, compression wood tracheids showed a roundish outline except at the growth ring boundary but lateral and opposite wood tracheids were angular to rectangular in outline. Intercellular spaces were occasionally detected in the compression wood except in the late wood at the growth ring boundary but were absent from both the lateral and opposite woods. Slit-like extensions of the bordered pit openings caused by the location of pit apertures within short and narrow helical grooves were observed in the compression wood tracheids but not in the opposite or lateral wood tracheids. In the compression wood tracheids, fine striations in the form of fine checks or grooves were observed on the lumen surfaces and the innermost $S_3$ layer of secondary wall was absent. In the tracheids of lateral and opposite woods, the $S_3$ layer was sometimes absent but occasionally highly developed. Cross-field pits in the compression wood appeared to be piceoid due to slit-like pit apertures but those in the lateral and opposite wood tracheids showed cupressoid to taxodioid. Quantitatively, compression wood tracheids were somewhat shorter than those of opposite or lateral wood in stem but not different from the opposite or lateral wood tracheids in branch. The walls were thicker in the compression wood than in the lateral or opposite wood. Uniseriate rays in the compression wood were fewer than in the lateral or opposite wood.

  • PDF

Surface Hardness Improvement of Larch Wood Using Thermal-Compression (열압밀화를 이용한 낙엽송의 표면경도 개선)

  • Hwang, Sung-Wook;Park, Sang-Bum;Suh, Jin-Suk;Kim, Jong-In;Hong, Seong-Cheol;Lee, Won-Hee
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.4
    • /
    • pp.460-466
    • /
    • 2012
  • This study was conducted to investigate the surface hardness of thermally-compressed larch wood by compression set and temperature. The surface hardness of thermally-compressed larch wood increased with increasing compression set and temperature. For compression set 60%, the specific gravity was increased as 0.93. However, the surface hardness was lower value as 31.1 N/$mm^2$ compared with a similar specific gravity of the tropical timber. For density profile, less than compression set 40%, compression was observed mainly surface area. On the other hand, more than 50%, density profile variation was reduced by compression of central part. Results of this study indicate that thermally-compressed larch wood can be replace some imported hardwoods such as oak or cherry. However, thermally-compressed larch wood was difficult to replace the tropical timber being imported in terms of surface hardness.

  • PDF

CT Image Reconstruction of Wood Using Ultrasound Velocities I - Effects of Reconstruction Algorithms and Wood Characteristics -

  • Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.21-28
    • /
    • 2005
  • For the proper conservation of wooden cultural properties, non-destructive evaluation (NDE) method, which can be used to quantitatively evaluate the internal state of wood members, are needed. In this study, an ultrasonic CT system composed of portable devices was attempted, and the capacity of this system was verified by reconstructing the CT images for two phantoms and two artificially defected specimens. Results from this study showed that the sizes of detected defects were enlarged and the shapes were distorted on the CT images. Also, the positions were shifted somewhat toward the surface of specimen, which is regarded due to the anisotropic property of wood. Compared to the filtered back-projection method, SIRT (simultaneous iterative reconstruction technique) method was determined to be more efficient as the algorithm of image reconstruction for wood. A new ultrasonic CT system is thought to be used as a NDE method for wood. However wood characteristics and wave diffraction within wood made it difficult to accurately evaluate the size, shape and position of defects. To improve the quality of CT image of wood, more research including the relationship between wood and ultrasound is needed, and wood properties should be taken into consideration on the image reconstruction algorithm.

Abrasive-Assisted High Energy Water-Jet Machining Characteristics of Solid Wood

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.1-7
    • /
    • 2004
  • The application of abrasive-assisted high energy water-jet was investigated as a possible new method of cutting wood. In this study the maximum cutting speeds for species of various wood density were determined and water-jet machining characteristics were investigated for sixteen Korean domestic species. The maximum cutting speed ranged from 200 to 750 mm/min. The results indicate that wood density affects machining characteristics such as maximum cutting speed, surface roughness, and kerf width. Roughness of surface generated increased and kerf width decreased as penetration depth increased.

Spectroscopic Characterization of Wood Surface Treated by Low-Temperature Heating (저온 열처리 목재 표면의 분광학적 특성)

  • Kim, Kang-Jae;Nah, Gi-Baek;Ryu, Ji-Ae;Eom, Tae-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.285-296
    • /
    • 2018
  • As a study for the verification of heat treated wood according to ISPM No. 15, the spectroscopic characteristics of the heat treated wood surface were analyzed. Various functional groups were observed on the IR spectrum, but it was difficult to find any particular difference between wood species, heat treatment time and storage period. HBI (hydrogen-bonding intensity) shows the change of the heat treated wood according to the storage time, but the change of wood with the heat treatment time was hard to be observed. On the PCA score plot, however, it was possible to sort the wood according to the heat treatment time of 60 minutes or 90 minutes in the species. The standards for classification of heat-treated wood in PCA were aromatic rings in lignin and C-H bending in cellulose, and these components were able to classify heat-treated wood by ISPM No. 15.

Dynamic Property of Cross-Laminated Woods Made with Temperate Seven Species

  • GONG, Do-Min;SHIN, Moon-Gi;LEE, Soo-Hyun;BYEON, Hee-Seop;PARK, Han-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.504-513
    • /
    • 2021
  • In this study, cross-laminated wood panels were manufactured with four softwoods and three hardwoods with the goal of efficiently predicting the static strength performance using dynamic modulus of elasticity (MOE) and simultaneously revealing the dynamic performance of cross-laminated wood panels. The effect of the density of the species on the dynamic MOE of the laminated wood panels was investigated. Moreover, the static bending strength performance was predicted nondestructively through the correlation regression between the dynamic MOE and static bending strength performance. For the dynamic MOE, the parallel- and cross-laminated wood panels composed of oriental oak showed the highest value, whereas the laminated wood panels composed of Japanese cedar showed the lowest value. In all types of parallel- and cross-laminated wood panels, the density dependence was confirmed, and the extent of the density dependence was found to be greater in the P and C types with perpendicular-direction laminae in the faces than in the P and C types with longitudinal-direction laminae in the faces. Our findings confirmed that a high correlation exists at a significance level of 1% between the dynamic modulus and static bending modulus or bending strength in all types of laminated wood panels, and that the static bending strength performance can be predicted through the dynamic MOE.

Chemical Characteristics of Ozone Treated Pine Wood Meal (오존 처리에 의한 소나무 목분의 화학적 성상 변화)

  • Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • The pine wood meal was ozonated in acidic water. A 91.3% of lignin and 13% of polysaccharides in pine wood meal were degraded with 180 min ozonation. The phenolic hydroxyl groups of lignin in ozonated wood meals were increased with ozonation time. The vanillin content in nitrobenzene oxidation products of lignin is decreased with 10 min. ozonation and it was slightly increased with ozonation time. The sugar composition of ozonated wood meals showed that the hemicellulose was more susceptible to ozonation than cellulose. The crystallinity of ozonated wood meal was increased.