• Title/Summary/Keyword: Journal Bearing Wear

Search Result 200, Processing Time 0.026 seconds

Classification of Defects in Rotary Compressor by Neural Pattern Recognition of Acoustic Emission Signal (AE신호의 신경망 형상인식법에 의한 로터리 압축기의 결함 분류에 관한 연구)

  • Lee, K.Y.;Lee, C.M.;Hwang, I.B.;Kim, Y.W.;Hong, J.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 1998
  • The specimen with the wear between a roller and a vane and a normal specimen are classified by AE signal pattern recognition method with a neural network classifier in airconditioning operation test. Also the specimen with the scoring between a shaft and a bearing and a normal specimen are classified by the same method. As the internal pressure increases, the wear between the roller and the vane increases. The different pairs of oils and refrigerants five the effect on the wear.

  • PDF

The Effect of Carbide Size on the Mechanical Properties of AISI E 52100 Steel (AISI E 52100 강(鋼)의 기계적(機械的) 성질(性質)에 미치는 탄화물(炭化物) 크기의 영향(影響))

  • Cho, K.R.;Kim, B.W.;Nam, T.W.;Lee, B.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.3 no.4
    • /
    • pp.10-22
    • /
    • 1990
  • A study has been investigated on the effect of mechanical properties (tension strength, rotary bending fatigue strength, wear resistance, hardness) according to the carbide particle size variation by the treatment of 1) quenching tempering, and 2) quenching, subzero treatment and tempering. The material used in this investigation was a typical bearing steel, high C high Cr, AISI E 52100. The result obtained in this study were as follows : (1) Finer the carbide particle size increasing the hardness and retained austenite in same quenching condition. (2) Finer the carbide particle size reduced the tension and rotary bending fatigue which were resulted from austenite grain growth and carbide precipitation on grain boundry that induced by carbide refine heat treatment. (3) Finer the carbide particel size increasing the wear resistance which were resulted by uniform distribution of carbide and increased hardness induced by microstructural uniform hardenability of matrix. (4) When the carbide particles were refinded, subzero treatment is effective only wear resistance and hardness.

  • PDF

Effect of the Pocket Depth on the Hammering Behavior of an Air Bearing Stage (포켓의 깊이가 공기 베어링 스테이지의 햄머링 현상에 미치는 영향)

  • Lee, Chun Moo;Kim, Gyu Ha;Park, Sang Joon;Hwang, Gyu-Jin;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.37 no.4
    • /
    • pp.129-135
    • /
    • 2021
  • An air-bearing stage uses externally pressurized air as the lubricant between the stage and the rail. The supporting force generated by the supplied air makes the stage rise and move smoothly with extremely low friction. Mechanical contacts rarely happen, the bearing surfaces do not produce wear particles, and dust is not generated. It also has the advantage of having low energy loss and high precision. Because of its advantages, an air-bearing stage is used in several types of machines that require high precision. In this article, the effect of the pocket depth on the hammering phenomena of the air bearing is studied. An analysis program is developed to calculate the dynamic behavior of the stage by solving the Reynolds equation between the stage and the guideway and the equations of motion on the stage. The acceleration, constant movement, and deceleration are applied to the stage. The stage is modeled as a five-degree-of-freedom system. In the course of the dynamic behavior, the hammering phenomena occur under some special conditions. The deeper the pocket, the more unstable the behavior of the stage, and air hammering occurs when it exceeds a certain depth. In addition, the higher the supply pressure, the more unstable the behavior of the stage. However, hammering occurs even with a shallow pocket depth. Other conditions that affect the hammering phenomena are calculated and discussed.

Chemical Resistance and Field Trial of 3D-Printed Plastic Ball Bearing Used in Electric Motors for Chemical Processes (화학공정용 전동기에 사용된 3D 프린팅 플라스틱 볼베어링의 내화학성 평가 및 현장적용 연구)

  • Youngjun Kwon;Myounggyu Noh
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Fluid pumps in chemical processes are typically driven by electric motors. Even if the motor is separated from the pump with seals, wear resulting from friction and misalignment can lead to leakage of chemical fluid, causing corrosion in the bearing supporting the motor, and, eventually, failure of the motor. It is thus a standard procedure to replace bearings at regular intervals. In this article, we propose 3D-printed plastic ball bearings for use as an alternative to commercial stainless-steel ball bearings. The plastic bearings are easy to manufacture, require less time to replace, and are chemically resistant. To validate the applicability of the plastic bearings, we first conducted chemical resistance tests. Bearings were immersed in 30 caustic acid and 30 nitric acid for 30 min and 24 h, respectively. The test results showed no corrosive damage to the bearings. A test rig was set up to compare the performance of the plastic bearings with that of the commercially equivalent deep-groove ball bearings. Loading test results showed that the plastic bearings performed as well as the commercial bearing in terms of vibration level and load-handling capability. Finally, a plastic bearing was subjected to a clean-in-place process for three months. It actually outperformed the commercial bearing in terms of chemical resistance. Thus, 3D-printed plastic bearings are a viable alternative to stainless-steel ball bearings.

Marine Engine Wear Diagnosis and Assessment Using the Wavelet Transform (웨이블릿을 이용한 선박 엔진 마모 상태 진단 평가)

  • Kim, Kyung-Hwan;Jo, Jae-Han;Lee, Hyun;Lee, Jang-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.845-850
    • /
    • 2012
  • Currently power of the diesel engine is increasing continuously, where the wearing problems become more severe. The wearing happens irregularly inside the cylinder, which causes a high burden to the marine engine. In this paper, a novel scheme to measure the wearing and to represent the engine states has been proposed. To monitoring the states of the marine engine efficiently, a laser displacement sensor has been utilized to measure the wearing happening inside the marine engine. To eliminate the noise signals in the distance measurement, the wavelet transform has been adopted, which is robust against the noises caused by vibrations. An engine simulator is designed to develop the system for measuring the engine wears, where the superiority of the wavelet transform against the conventional filtering schemes has been demonstrated.

Experimental Analysis of Tribological Performances of Padder Slider in HDD (하드 디스크 드라이브용 패드 슬라이더의 트라이볼로지 특성에 관한 실험적 연구)

  • 홍수열;좌성훈;고정석;이형재
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.312-320
    • /
    • 2001
  • In magnetic hard disk drives, higher areal recording density requires reduction of head-disk spacing. To overcome the increase of stiction associated with reduction of head-disk spacing, a padder slider, which adds pads to slider's air bearing surface, can be one of the practical solution for sub 20 nm flying height, and even for near contact recording. This study investigated the tribological characteristics of a padder slider. A padder slider took off slowly but showed less friction force than a normal slider. The hot/dry CSS test and drag test indicated that pad wear of a padder slider was negligible. The tribological performance of disk is an important factor to be considered. In particular, less carbon overcoat layer of the disk will result in higher stiction and wear in slider/disk interface. In conclusion, a padder slider shows encouraging tribological performances for practical use in HDD.

Failure Study for Tribological Characteristic Analysis of a Clutch System in Passenger Cars (승용차 클러치 시스템의 트라이볼로지 특성에 관련한 고장사례 연구)

  • Kim Chung-Kyun;Lee Il-Kwon
    • Tribology and Lubricants
    • /
    • v.22 no.4
    • /
    • pp.196-202
    • /
    • 2006
  • This paper presents a case study on the tribological failure analysis of a clutch system for a manual transmission car. The clutch systems are composed of clutch disk, clutch pressure plate, flywheel rubbing surface, coil and diaphragm springs, release bearing and lever, clutch spline and shaft. The purpose of a clutch system is to transmit and disconnect the driving power of engines by frictional farce from a rubbing surface of a flywheel to a clutch disk and clutch pressure plate with a minimum power loss. In this study, many tribological failure cases based on the wear phenomena and thermal distortions have been presented, which are collected from the car repair shop and maintenance center. The triboiogicai failures are mostly come from the driving conditions, overloading of a car, and especially driving style and personal habit of a car driver.

Effect of Silver Particle Introduction on Rolling Friction (구름거동에 미치는 은 입자 투여의 영향에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.417-426
    • /
    • 2001
  • The effect of silver particle introduction on the rolling friction of AISI 52100 steel pairs has been investigated. Experiments ware performed in dry conditions using a thrust bearing-type rolling test rig at a load range of 12-960 N and a sliding velocity range of 8-785 mm/sec with pure (99.99%) silver particles. Results showed that introduced silver particles formed transfer layers, which protected the virgin bearing surfaces and resulted in the low lolling friction. By changing the quantity of silver particles, transitions in the rolling friction were found. Results also showed that the variations in normal load and rolling speed also affected the rolling friction behavior. Analyses of SEM and EPMA showed that the formation the transfer layer was mainly governed by the silver particle quantity, normal load and rolling speed, and this resulted in the different behavior of rolling friction. In this study, it was found that the low and stable rolling friction was resulted from the, shakedown phenomena occurred at the silver transfer layer.

Pseudotumor and Subsequent Implant Loosening as a Complication of Revision Total Hip Arthroplasty with Ceramic-on-Metal Bearing: A Case Report

  • Naik, Lokesh Gudda;Shon, Won Yong;Clarke, I.C.;Moon, Jun-Gyu;Mukund, Piyush;Kim, Sang-Min
    • Hip & pelvis
    • /
    • v.30 no.4
    • /
    • pp.276-281
    • /
    • 2018
  • Pseudotumors are not uncommon complications after total hip arthroplasty (THA) and may occur due to differences in bearing surfaces of the head and the liner ranging from soft to hard articulation. The most common causes of pseudotumors are foreign-body reaction, hypersensitivity and wear debris. The spectrum of pseudotumor presentation following THA varies greatly-from completely asymptomatic to clear implant failure. We report a case of pseudo-tumor formation with acetabular cup aseptic loosening after revision ceramic-on-metal hip arthroplasty. The patient described herein underwent pseudotumor excision and re-revision complex arthroplasty using a trabecular metal shell and buttress with ceramic-on-polyethylene THA. Surgeons should be aware of the possibility of a pseudotumor when dealing with revisions to help prevent rapid progression of cup loosening and implant failure, and should intervene early to avoid complex arthroplasty procedures.

Effect of Surface Roughness of Counterface on Tribological Characteristics of PTFE and UHMWPE (상대재료의 표면거칠기에 따른 PTFE와 UHMWPE의 마찰 및 마멸 특성)

  • Dong, Sun;Chung, Koo-Hyun;Lee, Kyung-Sick
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.293-301
    • /
    • 2011
  • Understanding of the tribological characteristics of polytetrafluoroethylen (PTFE) and ultra-high-molecular-weight polyethylene (UHMWPE) is crucial for their applications such as bearing and total joint replacement. In this work, the effect of the surface roughness of carbon steel on the tribological behaviors of PTFE and UHMWPE was experimentally investigated by using block-on-ring tribotester with friction force monitoring capability. It was found that that the amount of material transfer layers of PTFE formed on the carbon steel was significantly larger than those of UHMWPE, which was responsible the lower friction coefficient of PTFE. It was also concluded that the effect of surface roughness of carbon steel on the friction coefficient of UHMWPE was more significant than that of PTFE. For UHMWPE, it was found that the effect of surface roughness of counterface was varied with respect to applied normal force and sliding as well. Based on Archard's wear law, the wear coefficient of PTFE and UHMWPE was calculated to be $3{\times}10^{-5}$ ~ $8{\times}10^{-5}$ and $7{\times}10^{-6}$ ~ $2{\times}10^{-5}$, respectively.