• Title/Summary/Keyword: Journal Bearing Wear

Search Result 200, Processing Time 0.023 seconds

A Study on Friction and Wear Properties of Tetrahedral Amorphous Carbon Coatings on Various Counterpart Materials

  • Lim, Min Szan;Jang, Young-Jun;Kim, Jong-Kuk;Kim, Jong-Hyoung;Kim, Seock-Sam
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.241-246
    • /
    • 2018
  • This research addresses the improvement of tribo-systems, specifically regarding the reduction of friction and wear through tribo-coupling between tetrahedral amorphous carbon (ta-C) with different types of counterpart materials, namely bearing steel (SUJ2), tungsten carbide (WC), stainless steel (SUS304), and alumina ($Al_2O_3$). A second variable in this project is the utilization of different values of duct bias voltage in the deposition of the ta-C coating - 0, 5, 10, 15, and 20 V. The results of this research are expected to determine the optimum duct bias and best counter materials associated with ta-C to produce the lowest friction and wear. Results obtained reveal that the tribo-couple between the ta-C coating and SUJ2 balls produces the lowest friction coefficient and wear rate. In terms of duct bias changes, deposition using 5 V produces the most optimum tribological behavior with lowest friction and wear on the tribo-system. In contrast, the tribo-couple between ta-C with a WC ball causes penetration through the coating surface layer and hence high surface delamination. This study demonstrates that the most effective ta-C coating duct bias is 5 V associated with SUJ2 counter material to produce the lowest friction and wear.

Minimization of Tilting Moment of Co-Rotating Scroll Compressor by Design of Back Pressure Chamber (배압실의 설계를 통한 상호회전 스크롤 압축기의 전복 모멘트 최소화)

  • Gu, In-Hoe;Park, Jin-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1305-1313
    • /
    • 2000
  • In a co-rotating scroll compressor, both scrolls rotate on their fixed axes contrary to the conventional orbiting type scroll machine. This implies fixed locations and directions of the gas pressure force and sealing force. Because the tilting moment is mainly caused by interplay between the resultant force of above forces and bearing reaction force, the variation during one cycle is relatively small. Under real operation, this moment is balanced by the restoring moment created by the reaction between the baseplate and thrust bearing or between the scroll tip and baseplate. If these reactions become too large, greater torque is required due to increased friction in addition to the wear of mating parts. Consequently, appropriate study and minimization of tilting moment is important in the design of scroll machines. In this study, taking into account of the small variation of tilting moment during one cycle, we minimize the moment and thrust bearing reaction force by a properly designed back pressure chamber. As a result, for both the driving and driven scrolls, the tilting moment and the reaction force of thrust bearing can be minimized. And the stability is improved for all cases.

Experimental Study on the Interface Bonding Characteristics of a Pin-bushing Bearing (핀부시 베어링 소재의 계면접합특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.315-319
    • /
    • 2008
  • This paper presents the interface bonding characteristics between a phosphor bronze and a steel plate for pin-bush bearings. The pin-bush bearing is an important component in which is used to reduce a friction loss and a wear against the piston pin. The pin-bush bearing is manufactured by hot-pressing a phosphor bronze and a back metal of a steel plate. This paper investigated the bonding interface characteristics in which is manufactured by melting a copper based bronze and a steel plate. The hardness from the inner surface of a bronze to the outer one of steel has been measured using a Vickers hardness tester. The experimental results show that the hardness of a bronze is superior to that of the conventional bronze and the transient hardness of pin-bush bearings is gradually increasing to the hardness of the steel back metal. This means that the bonding interface zone of pin-bush bearings may be fabricated by defusing a bronze to the steel plate due to a density difference between two materials.

Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 3 - Effect of Groove Shape (미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제3보 - 그루브 형상의 영향)

  • Park, TaeJo;Jang, InGyu
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.193-198
    • /
    • 2020
  • Fluid film bearings are among the best devices used for overcoming friction and reducing wear. Surface texturing is a new surface treatment technique used for processing grooves and dimples on the lubricated surface, and it helps to minimize friction further and improve the wear resistance. In several studies, parallel surfaces, such as thrust bearings and mechanical face seals, have been investigated, but most sliding bearings have a convergent film shape. This paper presents the third part of a recent study and focuses on the effect of the groove shape on the lubrication performance of inclined slider bearings, following the two previous papers on the effects of the groove position and depth. We adopted the continuity and Navier - Stokes equations to conduct numerical analyses using FLUENT, which is a commercial computational fluid dynamics code. The groove shape adopted in the numerical analysis is rectangular and triangular, and its depth is varied. The results show that the streamlines, pressure distributions, and groove shape significantly influence the lubrication performance of the inclined slider bearing. For both shapes, the load-carrying capacity (LCC) is maximum near the groove depth, where vortices occur. In the shallow grooves, the LCC of the rectangular shape is higher, but in deeper grooves, that of the triangular shape is higher. The deeper the rectangular groove, the higher the decrease in the frictional force. The results of this study can be used as design data for various sliding bearings.

Investigation of Head-Disk Interactions at Ultra-low Flying HDI

  • Cho, Unchung
    • KSTLE International Journal
    • /
    • v.3 no.2
    • /
    • pp.114-118
    • /
    • 2002
  • In this work, head-disk interactions are studied when flying height becomes lower than laser bump height on the landing zone of a disk. With the reduction of the spinning speed in a spin stand, the flying height is decreased under the height of laser bumps. Conventional and padded pico sliders sweep between landing Bone and data zone and, then, the dynamic behavior of the pico sliders and head-disk impacts are investigated using AE and stiction/friction signals. After 200n cycle-sweep tests, bearing analysis and AFM analysis indicate that there are some signs of wear and plastic deformation in the landing zone of a disk, although AE and stiction/friction signals are not significantly changed during the sweep tests. The experimental results of this paper suggest that in CSS tests at component level, more rigorous examination methods of wear and plastic deformation might be necessary as flying height becomes getting lower.

Application of Hidden Markov Model Using AR Coefficients to Machine Diagnosis (AR계수를 이용한 Hidden Markov Model의 기계상태진단 적용)

  • 이종민;황요하;김승종;송창섭
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.48-55
    • /
    • 2003
  • Hidden Markov Model(HMM) has a doubly embedded stochastic process with an underlying stochastic process that can be observed through another set of stochastic processes. This structure of HMM is useful for modeling vector sequence that doesn't look like a stochastic process but has a hidden stochastic process. So, HMM approach has become popular in various areas in last decade. The increasing popularity of HMM is based on two facts : rich mathematical structure and proven accuracy on critical application. In this paper, we applied continuous HMM (CHMM) approach with AR coefficient to detect and predict the chatter of lathe bite and to diagnose the wear of oil Journal bearing using rotor shaft displacement. Our examples show that CHMM approach is very efficient method for machine health monitoring and prediction.

Preparation of Al-Sn Coating Bearings by RF Sputtering Method and Evaluation of Their Properties (RF 스퍼터링법에 의한 Al-Sn계 코팅베어링의 제작과 특성 평가)

  • 이찬식;이명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.139-146
    • /
    • 2000
  • The development of high performance materials is very important subject in order to enhance the properties of bearings whose role is to transfer energy harmoniously by reducing the problem of friction and wear down, etc. between the interacting solid surfaces in relative motion under high loads in comply with mechanical operating mechanism of engines. In this study, several (100-x)Al-xSn coating films (where x=85, 75, 65 atomic % at Al) on substrates which are abt. 2mm thickenss of Kelmet layer sintered back steel were prepared by using RF sputtering system. These coating films were observed the morphology by SEM(Scanning Electron Microscope) and investigated the crystal structure by XRD(X-ray Diffractor) for their properties. And friction coefficient of these films was measured by ball-on-disc tester for their tribological properties. From the experimental results, it was shown that high performance properties of bearing can be improved greatly by controlling the composition and morphology of material surface with effective use of the plasma-assisted sputtering process.

  • PDF

Critical Speeds Evaluation of Turbo Pump Unit with a Elasticring Inserted Ball Bearing (탄성 링을 갖는 볼 베어링 지지의 터보 펌프 임계 속도에 관한 연구)

  • Lee, Yong-Bok;Kim, Chang-Ho;Kwak, Hyun-Duck;Ha, Tae-Woong;Yoo, Woo-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.2 s.11
    • /
    • pp.22-28
    • /
    • 2001
  • This study was performed to evaluate the dynamic behavior of turbo pump unit. The acceptable separate margin of $1^{st}$ critical speed was obtained by the use of elastic-ring inserted ball bearing, while the poor separate margin of $1^{\st}$ critical speed was appeared in the case without the elastic-ring. In addition, the results show that the stiffness and damping of plain seals give more separate margin of $2^{nd}$ critical speed. However the wear or the failure of seals could reduce the $2^{nd}$ critical speed near the operating speed.

  • PDF

Adhesives and Sealants Used in Machinery and Equipment Assembly, Maintain and Repair

  • Zhai, Haichao;Li, Yinbai;Lin, Xinsong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.1
    • /
    • pp.30-36
    • /
    • 2002
  • In this paper, some idea about the use of Metal and ceramic filled epoxy adhesive, Anaerobic adhesive and RTV silicone in the assembly, maintain and repair of machinery and equipment is given. Many examples which have been successfully used in Chinese industry are introduced: ${\bullet}$ Wear, Abrasion, Corrosion/Erosion Resistance and Metal Rebuilding Worn shafts, Scored Hydraulic Ram, Bearing Housings, Slurry Pumps (Bodies & Impellers), Slide-ways, Heat Exchangers, Cracked Castings and Molds. Leaking Pipes and Tanks. ${\bullet}$ Locking and Retaining Thread, Bearing, Keyways, Bolts, Nuts, Studs, Gears, Collars, Motors. ${\bullet}$ Scaling and Gasketing Flanges, Pipe Joints, Machined surfaces.

  • PDF

A study on the surface accuracy according to applied load in burnishing of steel

  • Lee, Y.C.;Yuck, K.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.70-76
    • /
    • 1993
  • Burnishing, as a micro plastic working, is a finishing process used in conjuction with or in replacement of reaming, honing, lapping, and/or grinding. The tool which is a smooth, round steel ball slightly larger than the bore is pushed through pre-machined hole, leaving a closely controlled finish. The major application of the processes is to improve the geometric and mechanical properties of surface such as (1) dimensional accuracy, (2) surface roughness, (3) bearing ratio, (4) surface hardness, (5) wear resistance, (6) fatigue and corrosion resistance, etc. Therefore, this study carried out some experiments to illustrate the theoretical formula and to investigate surface accuracy (e.g. variation of diameter, surface roughness, bearing ratio) in accordance with the applied burnishing load.

  • PDF