• 제목/요약/키워드: Joule-Heat

검색결과 148건 처리시간 0.021초

탄소강재 용접부의 온도분포에 관한 연구 (A Study on the Temperature Distribution of Welding Zone in Carbon Steel)

  • 남궁재관;홍재학
    • 한국안전학회지
    • /
    • 제5권3호
    • /
    • pp.33-38
    • /
    • 1990
  • In this study, the transient temperature distribution of welded zone was analyzed by Finite Element Method for the optimal design of weldment. This study was carried out for the steel plate 8mm thick, 100mm wide, 100mm long that butt weld. The weld was made with a heat input of 2,250 joule/cm(arc current : 180 amperes ; arc voltage :25 volts ; and arc travel steed : 0.28 cm/sec). In the analysis of temperature, cooling in the welded zone by the conduction between materal was almost completed at 600 sec when a unique temperature field was formed. after this, the material was gradually cooled by the heat transfer to the circumference. In the early phase the temperature in base metal zone is little changed. but after the rise in temperature the whole area is cooled gradually.

  • PDF

CO2 기반 금형 급속 냉각기술의 수치해석적 연구 (Numerical Analysis of CO2-Based Rapid Mold Cooling Technology)

  • 최재혁
    • Design & Manufacturing
    • /
    • 제17권3호
    • /
    • pp.61-66
    • /
    • 2023
  • In this study, we developed a simulation methodology for a technology that rapidly cools molds by directly spraying them with CO2 in its liquefied gaseous state. Initially, a simulation verification process was conducted using ANSYS Fluent's heat transfer analysis based on temperature values measured in prior research experiments, ensuring a comparable temperature could be calculated. Subsequently, the validated analysis method was employed to evaluate design factors that exert the most significant influence on cooling. An evaluation was conducted based on three factors: part thickness, mold thickness, and the melting temperature of material. Using a full factorial design approach, a total of 27 analyses were completed and subsequently calculated through analysis of means. The impact assessment was carried out based on the temperature values at the product's core. The results indicated that the thickness of the mold had the highest influence, while the melting temperature of material had the least.

PCAS공정에 의한 고융점 소결체 열전달 해석 및 특성분석 (Thermal Characteristic Simulation and Property Evaluation of High Melting Point Materials by Pulsed Current Activated Sintering Process)

  • 남효은;장준호;박현국;오익현
    • 센서학회지
    • /
    • 제26권3호
    • /
    • pp.214-222
    • /
    • 2017
  • In this study, the effects of internal heat treatment associated sintering temperatures were simulated by the Finite Element Method (FEM). The sintering mechanism of pulsed current activated sintering process (PCAS) is still unclear because of some unexplainable heat transfer phenomena in coupled multi-physical fields, as well as the difficulty in measuring the interior temperatures of metal powder. We have carried out simulation study to find out thermal distributions between graphite mold and Ruthenium powder prior to PCAS process. For PCAS process, heating rate was maintained at $100^{\circ}C/min$ the simulation indicates that the sintering temperature range was between $1000^{\circ}C$ to $1300^{\circ}C$ under 60 MPa. The heat transfer inside the Ruthenium sintered-body sample was modelled through the whole process in order to predict the minimum interior temperature. Thermal simulation shows that the interior temperature gradient decreased by graphite punch length and calculation results well agreed with the PCAS field test results.

초고압 전력기기의 온도상승 예측 (Prediction of Temperature Rise in Power Appratus)

  • 김승욱;박정홍;한성진;이병윤;박경엽;송원표;김정배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.113-115
    • /
    • 2001
  • In order to design the power appratus such ac bus bar, the current carrying ampacity should be determined, Since it is limited by maxium operating temperature, it is very important to predict temperature-rise on it. The main causes to raise temperature are joule's loss in the current carrying conductor and induced circulating and eddy current in the tank. The heat transfer is divided into convection and radiation on boundary, determining convection heat transfer coefficient is not easy. This paper propose a new technique that can be used to estimate the temperature rise in the extra high voltage bus bar. The heat transfer coefficient is analytically calculated by applying Nusselt Number depending on temperature as well as model geometry. The analytic method which use heat transfer coefficient is coupled with finite element method. The temperature distribution in the bus bar by the proposed method shows good agreement with experimental data.

  • PDF

물의 T-s 선도 상에서 26 종류의 물성치 작도 및 시스템 해석 프로그램 개발 (Program Development for Drawing of 26 Properties and System Analysis on T-s Diagram of Water or Vapor)

  • 김덕진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.157-164
    • /
    • 2008
  • The temperature-entropy diagram of water or vapor displays graphically the thermophysical properties, so it is very conveniently used in various thermal systems. On general T-s chart of water, there are temperature, pressure, quality, specific volume, specific enthalpy, specific entropy. However, various state and process values besides above properties can be plotted on T-s diagram. In this study, we developed the software drawing twenty six kinds of properties, that is temperature, pressure, quality, specific volume, specific internal energy, specific enthalpy, specific entropy, specific exergy, exergy ratio, density, isobaric specific heat, isochoric specific heat, ratio of specific heat, coefficient of viscosity, kinematic coefficient of viscosity, thermal conductivity, prandtl number, ion product, static dielectric constant, isentropic exponent, velocity of sound, joule-thomson coefficient, pressure coefficient, volumetric coefficient of expansion, isentropic compressibility, and isothermal compressibility. Also, this software can analyze and print the system values of mass flow rate, volume flow rate, internal energy flow rate, enthalpy flow rate, entropy flow rate, exergy flow rate, heat flow rate, power output, power efficiency, and reversible work. Additionally, this software support the functions such as MS-Power Point.

  • PDF

고온에서 안정한 저전력 마이크로히터 구조 최적화 연구 (Study on Optimal Structure of Low Power Microheater to Remain Stability at High Temperature)

  • 임운현;;이기근
    • 전기학회논문지
    • /
    • 제68권1호
    • /
    • pp.69-76
    • /
    • 2019
  • Microheaters with different structures were fabricated and compared to find an optimal configuration enhancing the performances of $C_2H_2$ gas sensor. Three temperature sensors were integrated on the surface of the insulation layer over the microheater, and resistance changes were observed to check the generated heat from the microheater. A low operating voltage of 1mV was applied to the temperature sensor to minimize any influence of thermal heat from the resistance type temperature sensor, whereas high voltages in the range between 10 and 20V were applied to the microheater. A microheater structure generating maximum heat at low voltage was determined. The generated heat was verified by the temperature sensors on the top of the $Si_3N_4$ and infrared camera. A long term stability and accuracy of the microheater were observed. The developed microheater was applied to enhance the performances of $C_2H_2$ gas sensor and successfully confirmed that the developed microheater greatly contributes to the improvement of sensitivity and selectivity of gas sensor.

A comparison on the heat load of HTS current leads with respect to uniform and non-uniform cross-sectional areas

  • Han, Seunghak;Nam, Seokho;Lee, Jeyull;Song, Seunghyun;Jeon, Haeryong;Baek, Geonwoo;Kang, Hyoungku;Ko, Tae Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권3호
    • /
    • pp.44-48
    • /
    • 2017
  • Current lead is a device that connects the power supply and superconducting magnets. High temperature superconductor (HTS) has lower thermal conductivity and higher current density than normal metal. For these reasons, the heat load can be reduced by replacing the normal metal of the current lead with the HTS. Conventional HTS current lead has same cross-sectional area in the axial direction. However, this is over-designed at the cold-end (4.2 K) in terms of current. The heat load can be reduced by reducing this part because the heat load is proportional to the cross-sectional area. Therefore, in this paper, heat load was calculated from the heat diffusion equation of HTS current leads with uniform and non-uniform cross-sectional areas. The cross-sectional area of the warm-end (65K) is designed considering burnout time when cooling system failure occurs. In cold-end, Joule heat and heat load due to current conduction occurs at the same time, so the cross-sectional area where the sum of the two heat is minimum is obtained. As a result of simulation, current leads for KSTAR TF coils with uniform and non-uniform cross-sectional areas were designed, and it was confirmed that the non-uniform cross-sectional areas could further reduce the heat load.

히트펌프를 적용한 터보팽창기 천연가스 정압기지의 열역학적 분석 (Thermodynamic Analysis on Hybrid Turbo Expander - Heat Pump System for Natural Gas Pressure Regulation)

  • 성태홍;김경훈;한상조;김경천
    • 한국가스학회지
    • /
    • 제18권4호
    • /
    • pp.13-20
    • /
    • 2014
  • 상업용 천연가스 배급 시스템에서 천연가스의 공급압력은 압력조절밸브를 사용하여 제어하며 이때 막대한 압력에너지가 낭비된다. 이러한 폐압에너지는 터보 팽창기와 같은 터보기계를 사용하여 회수할 수 있으나 팽창과정에서 발생하는 Joule-Thompson 효과에 따라서 큰 온도강하가 발생한다. 터보 팽창기 전단 또는 후단에 보일러를 설치하여 영하의 온도를 방지할 수 있으며 또한 보일러를 대체하여 연료전지나 가스엔진의 폐열을 이용하여 천연가스를 예열할 수도 있으나 하이브리드 시스템의 구동을 위해 운영규모에 따라 일정량을 소모해야 한다. 이 연구에서는 천연가스가 가지고 있는 압력에너지를 활용하여 천연가스의 소모 없이 터보 팽창기와 연결된 히트펌프를 구동하여 천연가스를 예열하는 시스템을 제안하고 증발온도, 응축온도 및 작동유체의 변화에 따른 시스템의 열역학적 특성을 분석하였다. R717 냉매가 예상 작동범위 내에서 가장 높은 COP와 가장 낮은 압축일을 나타내 제안된 하이브리드 시스템에 적합함을 확인하였다. 보일러시스템과의 경제성 분석을 통해 천연가스를 LNG 형태로 수입하고 있는 국내의 경우 히트펌프 하이브리드 시스템이 경쟁력 있음을 확인하였다.

몰드변압기의 공기덕트의 구조 변화에 따른 온도특성 해석 (Analysis of Temperature Characteristic According to Variation of Air Duct of the Cast Resin Transformer)

  • 김지호;이향범;손진근
    • 전기학회논문지P
    • /
    • 제64권4호
    • /
    • pp.256-260
    • /
    • 2015
  • In this paper, achieved rise temperature distribution about degradation phenomenon of 24 MVA distribution cast resin transformer using CFD(Computational Fluid Dynamics). Usually, life of transformer is depended on temperature distribution of specification region than thermal special quality of transformer interior. Specially, life of transformer by decline of dielectric strength decreases rapidly in case rise by strangeness transformer interior hot spot temperature value permits. Because calculating high-voltage(HV) winding and low-voltage(LV) winding of cast resin transformer and Joule's loss of core for improvement these life, forecasted heat source, and HV winding and LV winding of cast transformer rise temperature distribution of core for supply of electric power and temperature distribution of highest point on the basis of the results. Also, calculated temperature rise limit of cast resin transformer and permission maximum temperature using analysis by electromagnetic heat source. Calculated and forecasted rise temperature distribution by heat source of thermal analysis with calculated result.

Silver nanowire-containing wearable thermogenic smart textiles with washing stability

  • Dhanawansha, Kosala B.;Senadeera, Rohan;Gunathilake, Samodha S.;Dassanayake, Buddhika S.
    • Advances in nano research
    • /
    • 제9권2호
    • /
    • pp.123-131
    • /
    • 2020
  • Conventional fabrics that have modified in to conductive fabrics using conductive nanomaterials have novel applications in different fields. These of fabrics can be used as heat generators with the help of the Joule heating mechanism, which is applicable in thermal therapy and to maintain the warmth in cold weather conditions in a wearable manner. A modified fabric can also be used as a sensor for body temperature measurements using the variation of resistance with respect to the body temperature deviations. In this study, polyol synthesized silver nanowires (Ag NWs) are incorporated to commercially available cotton fabrics by using drop casting method to modify the fabric as a thermogenic temperature sensor. The variation of sheet resistance of the fabrics with respect to the incorporated mass of Ag NWs was measured by four probe technique while the bulk resistance variation with respect to the temperature was measured using a standard ohm meter. Heat generation profiles of the fabrics were investigated using thermo graphic camera. Electrically conductive fabrics, fabricated by incorporating 30 mg of Ag NWs in 25 ㎠ area of cotton fabric can be heated up to a maximum steady state temperature of 45℃, using a commercially available 9 V battery.