• Title/Summary/Keyword: Joint transfer

Search Result 350, Processing Time 0.033 seconds

On the fatigue performance of Aluminum alloy 2024 scarfed lap joints

  • Yan, W.Z.;Gao, H.S.;Yuan, X.;Wang, F.S.;Yue, Z.F.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.35-49
    • /
    • 2012
  • A series of fatigue test were carried out on scarfed lap joints (SLJ) using in airfoil siding to explore the effect of structural details, such as rows of rivets, lap angles, on its fatigue performance. Finite element (FE) analysis was employed to explore the effect of lap angle on load transfer and the stress evolution around the rivet hole. At last, the fatigue lives were predicted by nominal stress approach and critical plane approach. Both of the test results and predicted results showed that fatigue life of SLJ was remarkably increased after introducing lap angle into the faying surface. Specimen with the lap angle of $1.68^{\circ}$ exhibits the best fatigue performance in the present study.

Nonlinear simulation of tunnel linings with a simplified numerical modelling

  • Zhao, Huiling;Liu, Xian;Bao, Yihai;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.593-603
    • /
    • 2017
  • A high-efficiency simplified modelling approach is proposed for investigating the nonlinear responses of reinforced concrete linings of shield tunnels. Material and geometric nonlinearities are considered in the analysis of the lining structures undergoing large deformation before ultimately losing the load-carrying capacity. A beam-spring element model is developed to capture the force-transfer mechanism between lining segments and radial joints. The developed model is validated by comparing analyzed results to experimental results of a single-ring lining structure under two loading conditions: the ground overloading and the lateral unloading respectively. The results show that the lining structure under the lateral unloading due to excavation on the both sides of the tunnel is more vulnerable compared to the case of ground overloading on the top of the tunnel. A parameter study is conducted and results indicate that the lateral pressure coefficient has the greatest influence on the behaviour of the lining structure.

2D and 3D numerical analysis on strut responses due to one-strut failure

  • Zhang, Wengang;Zhang, Runhong;Fu, Yinrong;Goh, A.T.C.;Zhang, Fan
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.965-972
    • /
    • 2018
  • In deep braced excavations, struts and walers play an essential role in the whole supporting system. For multi-level strut systems, accidental strut failure is possible. Once a single strut fails, it is possible for the loads carried from the previous failed strut to be transferred to the adjacent struts and therefore cause one or more struts to fail. Consequently, progressive collapse may occur and cause the whole excavation system to fail. One of the reasons for the Nicoll Highway Collapse was attributed to the failure of the struts and walers. Consequently, for the design of braced excavation systems in Singapore, one of the requirements by the building authorities is to perform one-strut failure analyses, in order to ensure that there is no progressive collapse when one strut was damaged due to a construction accident. Therefore, plane strain 2D and three-dimensional (3D) finite element analyses of one-strut failure of the braced excavation system were carried out in this study to investigate the effects of one-strut failure on the adjacent struts.

Load Transferring Mechanism and Design Method of Effective Detailings for Steel Tube-Core Concrete Interaction in CFT Columns with Large-Section

  • Li, Yuanqi;Luo, Jinhui;Fu, Xueyi
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.223-232
    • /
    • 2018
  • Two novel types of construction detailings, including using the distributive beam and the inner ring diaphragm in the joint between large-section CFT columns and outrigger truss to enhance the transferring efficiency of huge vertical load, and using the T-shaped stiffeners in the steel tube of large-section CFT columns to promote the local buckling capacity of steel tubes, were tested to investigate their working mechanism and design methods. Experimental results show that the co-working performance between steel tube and inner concrete could be significantly improved by setting the distributive beam and the inner ring diaphragm which can transfer the vertical load directly in the large-section CFT columns. Meanwhile, the T-shaped stiffeners are very helpful to improve the local bulking performance of steel tubes in the column components by the composite action of T-shaped stiffeners together with the core concrete under the range of flange of T-shaped stiffeners. These two approaches can result in a lower steel cost in comparison to normal steel reinforced concrete columns. Finally, a practical engineering case was introduced to illustrate the economy benefits achieved by using the two typical detailings.

Determination of Optimum Blank Shape to Minimize the Root Gap during TIG Welding in Hot Curvature Forming of Al5083 Thick Plate (열간 곡면성형된 Al5083 후판의 TIG 용접 시 루트갭 최소화를 위한 최적 블랭크 형상 결정)

  • Lee, Jeong Min;Ko, Dae Hoon;Lee, Kyung Hun;Lee, Chan Joo;Kim, Byung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.815-823
    • /
    • 2013
  • The hot curvature forming of large aluminum plates is a process used to produce spherical liquefied natural gas (LNG) tanks. In this study, we describe a method to determine the optimum shape of blanks to minimize the root gap in the forming process. The method proposed in this study was applied to a small-scale model for thick plates with a curvature of 1500 mm and thickness of 6 mm. First, the shape of the curved shells was determined as the target shape, and then a coordinate transform was used to determine the optimum blank shape, which was then iteratively modified using the results of finite element method (FEM) simulations, including heat transfer, until the shape error was minimized. Experiments in forming using Al5083 thick plate were carried out, showing that the method can determine the optimum blank shape within an allowable root gap of 0.1 mm.

Rural landscape and biocultural diversity in Shinan-gun, Jeollanam-do, Korea

  • Kim, Jae-Eun
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.249-256
    • /
    • 2015
  • Islands are often habitats to unique species because they have different environmental conditions from the mainland and other islands. Another characteristic of islands is their limited natural resources, which has led island residents to heavily rely on traditional ecological knowledge (TEK) and use resources sustainably. The so-called "Maeul landscape" shows the interrelationship of biological species and people's use of natural resources. Shinan-gun is an administrative district located in the southwestern part of Korea that forms an archipelago with huge tidal flat areas. Since long ago, people's use of these tidal flats shows a high degree of biocultural diversity. Maeul landscapes also show humans' adaptation to the natural environment. For instance, strong winds blowing mainly from the northwest have led people in Shinan-gun to create "Ushil," a windbreak forest with stone blocks to block wind from their villages and agricultural fields. At present, the transfer of TEK to future generations is at stake due to socio-economic changes that cause island populations to shrink and age rapidly. Islands are often regarded as good destinations for tourism, but attention should also be given to sustainable development due to the environmental characteristics of islands. International organizations are making efforts to curb the threats of global environmental problems especially on small islands. Their activities are aimed at seeking solutions that stress the central role of biocultural diversity in establishing the sustainable use of natural resources on islands. Joint efforts oflocal people and government authorities to protect and conserve the Maeul landscape should be encouraged.

The Effect of Attention Focusing Strategies on the Speed and Segment Coordination Characteristics of Taekwondo Hand Techniques (주의초점 전략이 태권도 기본동작의 속도 및 분절 협응패턴에 미치는 효과)

  • Kang, Sungchul;Kim, Kitae
    • Korean Journal of Applied Biomechanics
    • /
    • v.24 no.3
    • /
    • pp.229-238
    • /
    • 2014
  • This study comparatively analyzed the speed and segment coordination characteristics of Taekwondo hand techniques, while different attention focusing strategies were utilized. Ten elite Taekwondo poomsae athletes participated, and three different strategies (no focus, target focus, body focus) were utilized in random order. The hand velocity and upper body segment coordination characteristics were analyzed, with the following results. First, the maximum magnitudes of the hand velocity differed between the focus conditions for the Araenaereomakgi and Momtongjireugi techniques. Second, the angular velocity and kinetic energy transfer patterns of the segments differed between the focus conditions, and in the case of the body focus condition, the movement was more correct according to the theory. Third, the shoulder and elbow joint coordination patterns differed between the focus conditions, with more efficient movement shown with the body focus condition. In conclusion, we confirmed the potential of effectively using an attention focusing strategy in a taekwondo teaching situation. However, the effect on the movement coordination and results of the movement could be changed by a difference in the cue provided or the type of the task. In addition, depending on the task, the attention focusing strategy could affect the efficiency of the movement. Therefore, coaches and masters of Taekwondo will have to constitute determine the appropriate attention focusing cues based on the task.

A study on the characteristics of vertical welding positions using GA steel sheet in the $CO_2$ welding (GA 강판에 대한 $CO_2$ 수직용접자세의 특성에 관한 연구)

  • Kim, Jae-Seong;Jo, Yong-Jun;Lee, Gyeong-Cheol;Lee, Bo-Yeong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.36-38
    • /
    • 2007
  • The instability of the arc in the $CO_2$ arc welding affects the quality of the weld in the automotive industry. This paper evaluates the effects of the arc stability in $CO_2$ arc welding with respect to vertical welding positions. In this experiment, galva-annealed steel sheets(CA) were used as specimens, and these materials were welded by adopting new Cold Metal Transfer (CMT) process. For each sample, fillet joint welding trials were carried out using the same conditions. Each part of welding joints was welded with vertical-up, vertical-down position at $45^{\circ},\;90^{\circ}\;and\;135^{\circ}$ degrees. A high speed camera and a welding signal monitoring system were used for monitoring fluid-flow phenomena in weld pools and frequency measurements, respectively. Through this study, the welding position were found to be key factors mainly to influence the arc stability in $CO_2$ welding moreover and that the arc stability in the vertical-up welding position was observed to be more stable than the vertical-down welding position below $90^{\circ}$.

  • PDF

A Study on Isokinetic Strength Ratios of Hip joints in Above-knee Amputees (대퇴절단환자의 고관절 등속성근력비율에 관한 연구)

  • Song, Chang-Ho;Lee, Wan-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.10 no.1
    • /
    • pp.74-82
    • /
    • 2003
  • The purpose of this study is to provide guideline of muscle strengthening exercise for preparing ambulation by presenting suitable ratio of muscle power of agonist & antagonist, and that of concentric & eccentric contraction on behalf of amputee's normal ambulation training and it's strenthening as well. 7 Subjects who have femur amputee for experimental group were able to ambulate naturally without inconvenience and 20 adult subjects of comparison group for comparison were considered to be free from disturbance of ambulation. The method of study was to measure the muscle power of hip pint, was to figure out the ratio of agonist & antagonist, concentric contraction & eccentric contraction, and was to find out mean and standard deviation of each measurement. Every numerical value of comparison was tested by Mann-whitney and comparison group's comparison between left & right value was done with t-test. Results are as followings : 1) Extension force was stronger than flexor force and had no remarkable difference(p<0.05) 2) For normal adults, adduction farce was stronger than abduction force and for amputees, abduction force was stronger while adduction force was the same as the normal without showing remarkable difference(p<0.05) According the result above, I make an assumption that maintaining a proper ratio of muscle power on strengthening exercise for amputee's ambulation training & rehabilitation and finally bring out an improvement of transfer and ambulation.

  • PDF

Determination of Preheating Temperature for Box Girder Welding (강교용 박스거더의 용접예열 온도 선정에 관한 연구)

  • Cho, Jae-Hun;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.7 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • This study analyzed causes and status of cracks to suggest preventives for welding cracks generated on fillet welding zone of atmosphere corrosion resisting steel box girder. Penetrant testing, a sort of non-destructive testing, was conducted for inspection of crack status on welding zone. As a result of test, welding cracks were found on the point of start, center and end to fillet welding zone of 32 mm-thickness. The result of carbon equivalent composition of materials was 0.452%. According to welding specification, to preheat prevent welding crack, preheat temperature of $100{\sim}200^{\circ}C$ should be kept before welding execution. It was failed to keep preheat temperature because it had been executed on winter season and the structure of box girder had wide heat transfer area. As a result of examination of time varying preheating temperature of 32mm-thickness material, it was understood that preheat temperature of above $230^{\circ}C$ on both 130mm-long sides of welded joint can prevent welding crack.

  • PDF