• Title/Summary/Keyword: Joint of Branch

Search Result 110, Processing Time 0.026 seconds

Joint Antenna Selection and Multicast Precoding in Spatial Modulation Systems

  • Wei Liu;Xinxin Ma;Haoting Yan;Zhongnian Li;Shouyin Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3204-3217
    • /
    • 2023
  • In this paper, the downlink of the multicast based spatial modulation systems is investigated. Specifically, physical layer multicasting is introduced to increase the number of access users and to improve the communication rate of the spatial modulation system in which only single radio frequency chain is activated in each transmission. To minimize the bit error rate (BER) of the multicast based spatial modulation system, a joint optimizing algorithm of antenna selection and multicast precoding is proposed. Firstly, the joint optimization is transformed into a mixed-integer non-linear program based on single-stage reformulation. Then, a novel iterative algorithm based on the idea of branch and bound is proposed to obtain the quasioptimal solution. Furthermore, in order to balance the performance and time complexity, a low-complexity deflation algorithm based on the successive convex approximation is proposed which can obtain a sub-optimal solution. Finally, numerical results are showed that the convergence of our proposed iterative algorithm is between 10 and 15 iterations and the signal-to-noise-ratio (SNR) of the iterative algorithm is 1-2dB lower than the exhaustive search based algorithm under the same BER accuracy conditions.

An Experimental Study on the Flexural Behavior for T-joints with Square Hollow Structural Sections (각형강관 T형 접합부의 휨거동에 관한 실험 연구)

  • Park, Keum Sung;Lee, Sang Sup;Choi, Young Hwan;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.211-219
    • /
    • 2009
  • The purpose of the study described in this paper was to experimentally investigate branch squared T joints with cold formed hollow structural sections under the in plane moment in a Vierendeel Truss. The branch in the T joints was welded to the upper flange of the chord. The main experimental parameters were the ratio of the width to the thickness of the chord ($2{\gamma}$), with ${16.7{\leq}2{\gamma}{\leq}33.3}$, and the width ratio of the branch to the chord ($\beta$), with ${0.40{\leq}{\beta}{\leq}0.71}$. Nine specimens were tested and manufactured in joints under the in plane bending moment. Based on the results of the test, the in plane moment strength of the branch squared T joints was determined according to the bending deformation of the chord flange yielding, regardless of the ratio of the width to the thickness of the chord and the ratio of the width of the branch to the width of the chord. Also, the in plane moment strength of the branch squared T joints in the hollow structural sections can be defined as 1.5 times the moment load at M1%B the strength of the joints that governed the serviceability in the control group. Finally, the experimental results with the branch squared T joints show that the in lane moment strength of the joint increased as $2{\gamma}$ decreased and $\beta$ increased.

Large deformation modeling of flexible manipulators to determine allowable load

  • Esfandiar, Habib;Korayem, Moharam H.;Haghpanahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.619-629
    • /
    • 2017
  • This paper focuses on the study of complete dynamic modeling and maximum dynamic load carrying capacity computation of N-flexible links and N-flexible joints mobile manipulator undergoing large deformation. Nonlinear dynamic analysis relies on the Timoshenko theory of beams. In order to model the system completely and precisely, structural and joint flexibility, nonlinear strain-displacement relationship, payload, and non-holonomic constraints will be considered to. A finite element solution method based on mixed method is applied to model the shear deformation. This procedure is considerably more involved than displacement based element and shear deformation can be readily included without inducing the shear locking in the element. Another goal of this paper is to present a computational procedure for determination of the maximum dynamic load of geometrically nonlinear manipulators with structural and joint flexibility. An effective measure named as Moment-Height Stability (MHS) measure is applied to consider the dynamic stability of a wheeled mobile manipulator. Simulations are performed for mobile base manipulator with two flexible links and joints. The results represent that dynamic stability constraint is sensitive when calculating the maximum carrying load. Furthermore, by changing the trajectory of end effector, allowable load also changes. The effect of torsional spring parameter on the joint deformation is investigated in a parametric sensitivity study. The findings show that, by the increase of torsional stiffness, the behavior of system approaches to a system with rigid joints and allowable load of robot is also enhanced. A comparison is also made between the results obtained from small and large deformation models. Fluctuation range in obtained figures for angular displacement of links and end effector path is bigger for large deformation model. Experimental results are also provided to validate the theoretical model and these have good agreement with the simulated results.

FracSys와 UDEC을 이용한 사면 파괴 양상 분석 통계적 절리망 생성 기법 및 Monte Carlo Simulation을 통한 사면 안정성 해석

  • 김태희;최재원;윤운상;김춘식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.651-656
    • /
    • 2002
  • In general, the most important problem in slope stability analysis is that there is no definite way to describe the natural three-dimensional Joint network. Therefore, the many approaches were tried to anlayze the slope stability. Numerical modeling approach is one of the branch to resolve the complexity of natural system. UDEC, FLAC, and SWEDGE are widely used commercial code for the purpose on stability analysis. For the purpose on the more appropriate application of these kind of code, however, three-dimensional distribution of joint network must be identified in more explicit way. Remaining problem is to definitely describe the three dimensional network of joint and bedding, but it is almost impossible in practical sense. Three dimensional joint generation method with random number generation and the results of generation to UDEC have been applied to settle the refered problems in field site. However, this approach also has a important problem, and it is that joint network is generated only once. This problem lead to the limitation on the application to field case, in practical sense. To get rid of this limitation, Monte Carlo Simulation is proposed in this study 1) statistical analysis of input values and definition of the applied system with statistical parameter, 2) instead of the consideration of generated network as a real system, generated system is just taken as one reliable system, 3) present the design parameters, through the statistical analysis of ouput values Results of this study are not only the probability of failure, but also area of failure block, shear strength, normal strength and failure pattern, and all of these results are described in statistical parameters. The results of this study, shear strength, failure area, pattern etc, can provide the direct basement on the design, cutoff angle, support pattern, support strength and etc.

  • PDF

Factors Influencing Participation of Online Community and Intention of Joint Purchasing in Korea and China (온라인 커뮤니티 참여도와 공동구매의도에 영향을 미치는 요인: 한국과 중국을 중심으로)

  • Park, Cheol;Wang, Can
    • Information Systems Review
    • /
    • v.15 no.1
    • /
    • pp.69-89
    • /
    • 2013
  • This study examined the factors influencing participation of online community and intention of joint purchase in Korea and China. The online community member actively participate the social activities that can cause the effective communication characters and the great support of the society. In these two factors, the sense of worth related with compensation, norm, interaction, shared values will be taken as the independent variables. These variables as a parameter are related with the intention of joint purchase. To be aware of their behavior norm, interaction, compensation, shared value, these factors will be taken as predicting their behaviors in the online community and their further participating, commitment and co-shopping intention. As the results, compensation, norms, interaction, shared values had significant effects on the participation of online community, and this affected the intention of joint purchase in online community. Compensation and norm were significant in Korean sample. Implications and further direction are suggested on the base of the results.

  • PDF

Interventional Pain Management in Rheumatological Diseases - A Three Years Physiatric Experience in a Tertiary Medical College Hospital in Bangladesh

  • Siddiq, Md. Abu Bakar;Hasan, Suzon Al;Das, Gautam;Khan, Amin Uddin A.
    • The Korean Journal of Pain
    • /
    • v.24 no.4
    • /
    • pp.205-215
    • /
    • 2011
  • Background: Interventional pain management (IPM) is a branch of medical science that deals with management of painful medical conditions using specially equipped X-ray machines and anatomical landmarks. Interventional physiatry is a branch of physical medicine and rehabilitation that treats painful conditions through intervention in peripheral joints, the spine, and soft tissues. Methods: A cross-sectional study was conducted using three years of hospital records (2006 to 2008) from the Physical Medicine and Rehabilitation Department at Chittagong Medical College Hospital in Bangladesh, with a view toward highlighting current interventional pain practice in a tertiary medical college hospital. Result: The maximum amount of intervention was done in degenerative peripheral joint disorders (600, 46.0%), followed by inflammatory joint diseases (300, 23.0%), soft tissue rheumatism (300, 23.0%), and radicular or referred lower back conditions (100, 8.0%). Of the peripheral joints, the knee was the most common site of intervention. Motor stimulation-guided intralesional injection of methylprednisolone into the piriformis muscle was given in 10 cases of piriformis syndrome refractory to both oral medications and therapeutic exercises. Soft tissue rheumatism of unknown etiology was most common in the form of adhesive capsulitis (90, 64.3%), and is discussed separately. Epidural steroid injection was practiced for various causes of lumbar radiculopathy, with the exception of infective discitis. Conclusion: All procedures were performed using anatomical landmarks, as there were no facilities for the C-arm/diagnostic ultrasound required for accurate and safe intervention. A dedicated IPM setup should be a requirement in all PMR departments, to provide better pain management and to reduce the burden on other specialties.

The Efficacy of Repeated Radiofrequency Medial Branch Neurotomy for Lumbar Facet Syndrome

  • Son, Jung-Hee;Kim, Sang-Dae;Kim, Se-Hoon;Lim, Dong-Jun;Park, Jung-Yul
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.3
    • /
    • pp.240-243
    • /
    • 2010
  • Objective : Radiofrequency (RF) medial branch neurotomy is an effective management of lumbar facet syndrome. However, pain may recur after period of time. When pain recurs, it can be repeated, but the successful outcome and duration of relief from repeated procedures are not clearly known. The objective of this study was to determine the success rate and duration of pain relief from repeated radiofrequency medial branch neurotomy for lumbar facet syndrome. Methods : A retrospective review of medical records was done on 60 consecutive patients, from March of 2006 to February of 2009, who had an initial successful RF neurotomy but subsequently underwent repeated procedures due to recurrence of pain. All procedures were done in carefully selected patients after at least two responsive medial branch nerve blocks. C-arm fluoroscopic guide, impedance, sensory and motor threshold monitoring tools were used for the precise placement of electrodes. Responses of repeated procedures were compared with initial radiofrequency neurotomy for success rates and duration of pain relief. Results : There were 48 females and 12 males. Mean age was 52.4 years (range, 26-83). RF medial branch neurotomy was done on one side in 38 and both sides in 22 patients, each covering at least three segments. Average visual analog scale at last procedure was 6.8. Twelve patients had previous lumbar operations, including 4 patients with instrumentations. Fifty-five patients had two procedures and five patients had three procedures. Mean duration of successful pain relief (> 50% of previous pain for at least 3 months period) after initial radiofrequency neurotomy was 10.9 months (range, 3-28) in 51 (85%) patients. From repeated procedures, successful pain relief was seen in 50 (91%) patients with average duration of 10.2 months (range, 3-24). Five patients had third procedure, which was successful in 4 (80%) patients with mean duration of 9.8 months (range, 5-16). This was not statistically different from initial results. There were no permanent neurological complications from the procedures. Conclusion : Results of this study indicate that the frequency of success and durations of relief from repeated RF medial branch neurotomy for lumbar facet syndrome are similar to initial results that provided relatively prolonged period of pain relief without major side effects Each procedure seems to provide successful pain relief for about 10 months in more than 85% of carefully selected patients when properly done.

Experimental study of shear behavior of planar nonpersistent joint

  • Haeri, Hadi;Sarfarazi, Vahab;Lazemi, Hossein Ali
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.639-653
    • /
    • 2016
  • The present article discusses the effect of the ratio of bridge surface to total shear surface, number of bridge areas and normal stress on the failure behavior of the planar non-persistent open joints. Totally, 38 models were prepared using plaster and dimensions of $15cm{\times}15cm{\times}15cm$. The bridge area occupied $45cm^2$, $90cm^2$ and $135cm^2$ out of the shear surface. The number of rock bridges increase in fixed area. Two similar samples were prepared on every variation in the rock bridges and tested for direct shear strength under two high and low normal loads. The results indicated that the failure pattern and the failure mechanism is mostly influenced by the ratio of bridge surface to total shear surface and normal stress so that the tensile failure mode change to shear failure mode by increasing in the value of introduced parameters. Furthermore, the shear strength and shear stiffness are closely related to the ratio of bridge surface to total shear surface, number of bridge areas and normal stress.

Friction welding of multi-shape ABS based components with Nano Zno and Nano Sio2 as welding reinforcement

  • Afzali, Mohammad;Rostamiyan, Yasser
    • Coupled systems mechanics
    • /
    • v.11 no.3
    • /
    • pp.267-284
    • /
    • 2022
  • Due to the high usage of ABS in industries, such as aerospace, auto, recreational devices, boat, submarines, etc., the purpose of this project was to find a way to weld this material, which gives advantages, such as affordable, high speed, and good connection quality. In this experimental project, the friction welding method was applied with parameters such as numerical control (NC) machine with two different speeds and three cross-sections, including a flat surface, cone, and step. After the end of the welding process, samples were then applied for both tensile and bending tests of materials, and the results showed that, with increasing the machining velocity Considering of samples, the friction of the surface increased and then caused to increase in the surface temperature. Considering mentioned contents, the melting temperature of composite materials increased. This can give a chance to have a better combination of Nanomaterial to base melted materials. Thus, the result showed that, with increasing the weight percentage (wt %) of Nanomaterials contents, and machining velocity, the mechanical behavior of welded area for all three types of samples were just increased. This enhancement is due to the better melting process on the welded area of different Nano contents; also, the results showed that the shape of the welding area could play a significant role, and by changing the shape, the results also changed drastically.A better shape for the welding process was dedicated to the step surface.

EVALUATION OF BABY CORN SILK DETACHMENT SYSTEMS

  • Kunjara, Bharata;Ikeda, Yoshio;Nishizu, Takahisa
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.656-665
    • /
    • 1993
  • Two types of baby corn silk detachment systems called fixing and moving baby corn and based on applying frictional force on the silk were developed and evaluated. In the fixing mode the baby corn was fixed on a pin and a hollow frictional cylinder was moved concentrically and vertically along the baby corn towards the branch end. In the moving mode the baby corn was forced vertically towards the tip to pass through the same silk detachment cylinder. Traveling speeds of the detachment cylinder and the baby corn were 44.5 and 166.9 mm/s. In the fixing mode at silk moisture content of 91 % (w.b) silk detachment efficiencies at low and high speeds were 99.1 and 99.2%. The silk detachment efficiencies in the moving mode at low and high speeds were 96.6 and 98.5%. Damaged baby corn at low speed was less than at high speed in both modes. Minimum damage was nil in the fixing mode at low speed and the maximum was 47.5% in the moving mode at high speed. The damaged was due to ovaries r moval at the base near the joint between the baby corn and the branch.

  • PDF