• Title/Summary/Keyword: Joint map

Search Result 136, Processing Time 0.026 seconds

DISPARITY ESTIMATION/COMPENSATION OF MULTIPLE BASELINED STEREOGRAM USING MAXIMUM A POSTERIORI ALGORITHM

  • Sang-Hwa;Park, Jong-Il;Lee, Choong-Woong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.49-56
    • /
    • 1999
  • In this paper, the general formula of disparity estimation based on Bayesian Maximum A Posteriori (MAP) algorithm is derived. The generalized formula is implemented with the plane configuration model and applied to multiple baselined stereograms. The probabilistic plane configuration model consists of independence and similarity among the neighboring disparities in the configuration. The independence probabilistic model reduces the computation and guarantees the discontinuity at the object boundary region. The similarity model preserves the continuity or the high correlation of disparity distribution. In addition, we propose a hierarchical scheme of disparity compensation in the application to multiple-view stereo images. According to the experiments, the derived formula and the proposed estimation algorithm outperformed other ones. The proposed probabilistic models are reasonable and approximate the pure joint probability distribution very well with decreasing the computations to O(n(D)) from O(n(D)4) of the generalized formula. And, the hierarchical scheme of disparity compensation with multiple-view stereos improves the performance without any additional overhead to the decoder.

Estimating of Transplanting Period of Highland Kimchi Cabbage Using UAV Imagery (무인비행체 영상을 활용한 고랭지배추 정식시기 추정)

  • Lee, Kyung Do;Park, Chan Won;So, Kyu Ho;Kim, Ki Deog;Na, Sang Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.39-50
    • /
    • 2017
  • Growth monitoring of highland Kimchi cabbage is very important to respond the fluctuations in supply and demand from middle of August to early September in Korea. For evaluating Kimchi cabbage growth, it needs to classify the transplanting period of Kimchi cabbage, preferentially. This study was conducted to estimate the transplanting period of highland Kimchi cabbage from 2015 to 2016 in the main production area of highland Kimchi cabbage, Anbandegi, Maebongsan, and Gwinemi. Correlation between NDVI (Normalized Difference Vegetation Index) from UAV images and days after transplanting of Kimchi cabbage was high in early transplanting period. But because the growth curve of Kimchi cabbage showed S-type, joint use of multi-temporal linear regression equation for estimation of transplanting period was more suitable. Using application of these equations at Anbandegi, Maebongsan, and Gwinemi, we made the map of transplanting periods of highland Kimchi cabbage. Generally, highland Kimchi cabbage is harvested in sixty days later since transplanting. As a result, we could estimate the harvest time and area of highland Kimchi cabbage.

Analysis on Fault-Related Landformsin the Gyeongju Area of the Yangsan Fault Valley (양산 단층곡 경주 지역의 단층 지형 분석)

  • Park, Chung-Sun;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.19-30
    • /
    • 2018
  • This study tries to infer fault lines and produce a map for the lines based on a classification of fault-related landforms and fluvial landformsin the Gyeongju area of the Yangsan Fault Valley. Fault activities in the study area are thought to be older than the time of river formation or stronger than the erosion by river, while the northern and southern parts of the study area seem to have experienced fault activities after valley formation. It is also possible that weaker fault activities than the erosion by river seem to have been prevailed in the parts. In the study area, the Gyeongju alluvial fan is located within a wide erosional valley at the joint area of the Yangsan and Ulsan Faults. From the distribution of the landforms, it is inferred that several fault lines parallel to the Yangsan Fault are distributed at both sides of the fault valley. In particular, the area from Bae-dong to Nogok-ri, Naenam-myeon shows the most obvious linearity of the landforms within the study area. Several fault lines with a direction of NNE-SSW are also found around the epicenter of the 2016 Gyeongju Earthquake.

Optimizations for Mobile MIMO Relay Molecular Communication via Diffusion with Network Coding

  • Cheng, Zhen;Sun, Jie;Yan, Jun;Tu, Yuchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1373-1391
    • /
    • 2022
  • We investigate mobile multiple-input multiple-output (MIMO) molecular communication via diffusion (MCvD) system which is consisted of two source nodes, two destination nodes and one relay node in the mobile three-dimensional channel. First, the combinations of decode-and-forward (DF) relaying protocol and network coding (NC) scheme are implemented at relay node. The adaptive thresholds at relay node and destination nodes can be obtained by maximum a posteriori (MAP) probability detection method. Then the mathematical expressions of the average bit error probability (BEP) of this mobile MIMO MCvD system based on DF and NC scheme are derived. Furthermore, in order to minimize the average BEP, we establish the optimization problem with optimization variables which include the ratio of the number of emitted molecules at two source nodes and the initial position of relay node. We put forward an iterative scheme based on block coordinate descent algorithm which can be used to solve the optimization problem and get optimal values of the optimization variables simultaneously. Finally, the numerical results reveal that the proposed iterative method has good convergence behavior. The average BEP performance of this system can be improved by performing the joint optimizations.

A System Dynamics View of Safety Management in Small Construction Companies

  • Guo, Brian H.W.;Yiu, Tak Wing;Gonzalez, Vicente A.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.92-96
    • /
    • 2015
  • Due to unique characteristics of small construction companies, safety management is comprised of complex problems (e.g., resources constraints, a lack of formalized management structures, low level of management safety commitment etc.). In order to understand causal interdependencies between safety factors at different system levels (regulation, organization, technical and individual), this paper aims to develop a system dynamics (SD) model of safety management in small construction companies. The purpose of the SD model is to better understand why small construction companies have low level of safety performance. A causal loop diagram (CLD) was developed based on literature, with an attempt to map causal relationships between variables. The CLD was then converted into stock and flow diagram for simulation. Various tests were conducted to build confidence in the model's ability to represent the reality. A number of policies were analyzed by changing the value of parameters. The value of a system dynamics approach to safety management in small construction companies is its ability to address joint effects of multiple safety risk factors on safety performance with a systems thinking perspective. By taking into account feedback loops and non-linear relationships, such a system dynamics model provides insights into the complex causes of relatively poor safety performance of small construction companies and improvement strategies.

  • PDF

A Study on the Extracting ICT Development Trend and Promising Technologies by Utilizing Patent Information in Gyeongbuk Province (특허정보를 활용한 경북지역 ICT 개발동향 분석 및 유망기술 도출에 관한 연구)

  • Han, Jang-Hyup;Kim, Chae-Bogk
    • Journal of Korea Technology Innovation Society
    • /
    • v.21 no.1
    • /
    • pp.236-264
    • /
    • 2018
  • This study investigates the trend of the patent applications and the future direction of ICT in Gyeongbuk Province by employing patent portfolio analysis, one of the methodology of map analyses for industry-related ICT issues. Thus, this study aims to investigate the ICT development trend based on ICT patent information in Gyeongbuk Province. The promising technologies in ICT industry are extracted by applying patent portfolio analysis, one of the patent map analyses. The analysis results can be applied to the establishment of research and development strategies. This study extracts ICT trend by applying International Patent Classification to the patents registered in Gyeongbuk. For promising technologies, this study analyzed the patents based on the ICT Classification Code. Based on the analysis results, this study presents the trend of patent application, technology share, patent activity status, the trend of patent application by each technology according to ICT classification, the growth stages of ICT market, registration parties for patents, joint researches of research parties, and primary parties of patent applications. After drawing promising technologies, this study provides the future progress direction of ICT industry in Gyeongbuk Province. The research results also can be applied to securing technology competence and developing strategy of technology policy.

High-Quality Depth Map Generation of Humans in Monocular Videos (단안 영상에서 인간 오브젝트의 고품질 깊이 정보 생성 방법)

  • Lee, Jungjin;Lee, Sangwoo;Park, Jongjin;Noh, Junyong
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.2
    • /
    • pp.1-11
    • /
    • 2014
  • The quality of 2D-to-3D conversion depends on the accuracy of the assigned depth to scene objects. Manual depth painting for given objects is labor intensive as each frame is painted. Specifically, a human is one of the most challenging objects for a high-quality conversion, as a human body is an articulated figure and has many degrees of freedom (DOF). In addition, various styles of clothes, accessories, and hair create a very complex silhouette around the 2D human object. We propose an efficient method to estimate visually pleasing depths of a human at every frame in a monocular video. First, a 3D template model is matched to a person in a monocular video with a small number of specified user correspondences. Our pose estimation with sequential joint angular constraints reproduces a various range of human motions (i.e., spine bending) by allowing the utilization of a fully skinned 3D model with a large number of joints and DOFs. The initial depth of the 2D object in the video is assigned from the matched results, and then propagated toward areas where the depth is missing to produce a complete depth map. For the effective handling of the complex silhouettes and appearances, we introduce a partial depth propagation method based on color segmentation to ensure the detail of the results. We compared the result and depth maps painted by experienced artists. The comparison shows that our method produces viable depth maps of humans in monocular videos efficiently.

Consortium Configuration of Local Governments for Disaster Joint Response Plan (재난 공동 대응을 위한 지자체 컨소시엄 구성 방안)

  • Jung, Woo Young;Lee, Chang Hee;Kim, Gi Hong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.71-83
    • /
    • 2013
  • Recently frequencies and scales in natural disasters have been significantly increased and enlarged and that leads to increase interests on preventing disasters. As natural disasters occur, it is difficult to fulfill the scale of natural disasters using ordinary stocks in a local government. Thus, it is necessary to establish a system that commonly uses protection resources according to regional characteristics in order to rapidly implement labor mobilization and equipment distribution based on the damage of natural disasters. In this study, regional characteristics in Korea provinces are analyzed and 'a way of composing a local government consortium for common disaster responses' is proposed. First, a disaster map that represents the amount of damage for each local government published in the disaster yearbook from 2002 to 2011 is produced using GIS. Then, the whole land is divided into five different sections according to administrative regions and that are divided into 12 clusters again based on the geographical and humanistic characteristics and the analysis of the scale of damage in typhoons and heavy rainfalls. Finally, disaster protection base stations for each region are selected. The data of analyzing disaster damages may be used as a reference material for establishing disaster prevention plans.

Practical visualization of discontinuity distribution in subsurface using borehole image analysis (시추공영상분석을 이용한 지하 불연속면 분포의 가시화 실용연구)

  • 송무영;박찬석
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2002
  • Borehole image analysis has been carried out to obtain the detailed geological data by approach of direct observation. Direct application of borehole image analysis inevitably gives rise to a few of restriction of data acquisition due to the limited information within narrow borehole space. Considering the apparent dip of discontinuity surface depending upon the direction, the visualized program of two-dimensional subsurface discontinuities is coded. Borehole image analysis can compensate the distribution of subsurface discontinuity extending into the expected area of investigation. In order to draw subsurface profile in the proposed area of subsurface construction, visualized program is coded as a window GUI (Graphic User Interface) using Fortran and Visual Basic Programming languages. It is to open publicly for the usage of whoever is in want. Discontinuity distribution map is visualized along the Proposed line of tunnel in the Janggye-ri area, Jangsu-gun. Using the visualized program, the limited information from borehole spatially applies into analysis of overall subsurface structures, and the distributional characteristics of discontinuity anticipate at the proposed area. In addition, spacing and extension of joint and depth of discontinuity effecting tunnel safety can be visualized along the direction of the proposed tunnel. These lines of visualization apply design and construction of fundanmental structures.

Geometrical Interpretation on the Development Sequence and the Movement Sense of Fractures in the Cheongsong Granite, Gilan-myeon Area, Uiseong Block of Gyeongsang Basin, Korea (경상분지 의성지괴 길안면지역에서 청송화강암의 단열 발달사 및 운동성에 대한 기하학적 해석)

  • Kang, Ji-Hoon;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.4 s.46
    • /
    • pp.180-193
    • /
    • 2006
  • The Gilan area in the central-northern part of Uiseong Block of Cretaceous Gyeongsang Basin is composed of Precambrian metamorphic rocks, Triassic Cheongsong granite, Early Cretaceous Hayans Group, and Late Cretaceous-Paleocene igneous rocks. In this area, the faults of various directions are developed: Oksan fault of $NS{\sim}NNW$ trend, Gilan fault of NW trend, Hwanghaksan fault of WNW trend, and Imbongsan fault of EW trend. Several fracture sets with various geometric indicators, which determine their relative timing (sequence and coexistence relationships) and shear sense, we well observed in the Cheongsong granite, the basement of Gyeongsang Basin. The aim of this study is to determine the development sequence of extension fractures and the movement sense of shear fractures in the Gitan area on the basis of detailed analysis of their geometric indicators (connection, termination, intersection patterns, and cross-cutting relations). This study suggests that the fracture system of the Gilan area was formed at least through seven different fracturing events, named as Pre-Dn to Dn +5 phases. The orientations of fracture sets show (W) NW, NNW, NNE, EW, NE in descending order of frequency. The orientation and frequency patterns are concordant with those of faults around and in the Gilan area on a geological map scale. The development sequence and movement sense of fracture sets are summarized as follows. (1) Pre-Dn phase: extension fracturing event of $NS{\sim}NNW$ and/or $WNW{\sim}ENE$ trend. The joint sets of $NS{\sim}NNW$ trend and of $WNW{\sim}ENE$ trend underwent the reactivation histories of sinistral ${\rightarrow}$dextral${\rightarrow}$sinistral shearing and of (dextral${\rightarrow}$) sinistral shearing with the change of stress field afterward, respectively. (2) Dn phase: that of NW trend. The joint set experienced the reactivations of sinistral${\rightarrow}$dextral shearing. (3) Dn + 1 phase: that of $NNE{\sim}NE$ trend. The joint set was reactivated as a sinistral shear fracture afterward. (4) Dn +2 phase: that of $ENE{\sim}EW$ trend. (5) Dn +3 phase: that of $WNW{\sim}NW$ trend. (6) Dn+4 phase: that of NNW trend. The joint set underwent a dextral shearing after this. (7) The last Dn +5 phase: that of NNE trend.