• 제목/요약/키워드: Joint geometry

검색결과 179건 처리시간 0.027초

유한요소법을 이용한 등속 조인트 고무 부트의 변형해석 및 설계변경에의 응용 (Stress Analysis of C.V. Joint Rubber Boots by Finite Element Method and Application to Design Modification)

  • 김세호;이형욱;허훈;이종화;오승탁
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.123-137
    • /
    • 1998
  • The finite deformation with self contact problem of C. V. joint boots is analysed by using the implicit finite element code ABAQUS/Standard. It is shown that analysis results have a good agreement with experimental ones to the degree of maximum rotation angle. As an application of design modification, the effects of thickness change of the rounded part of boot model on the bending and the contact situation of deformed geometry are investigated. In this paper, the effect of the design modification in the end on the leakage is examined using 2-D finite element simulation. To solve the leakage problem of grease, the length of the small end is enlarged. From this study, it is confirmed that we can save the cost and time by applying FEM techniques to analyze and design the boot model.

  • PDF

주관절의 생역학 (Biomechanics of the Elbow)

  • 문준규
    • Clinics in Shoulder and Elbow
    • /
    • 제13권1호
    • /
    • pp.141-145
    • /
    • 2010
  • 목적: 주관절의 생역학은 주관절 손상의 병인을 이해하고 임상적 치료의 과학적 기초를 제공하는 의학이다. 저자는 생역학적인 관점에서 주관절 손상의 진단과 치료의 개념을 요약하였다. 대상 및 방법: 주관절 역학은 크게 운동학, 동역학 그리고 이를 바탕으로 한 안정성의 분야로 나누어 설명할 수 있다. 이는 주관절을 구성하는 수동적 또는 능동적 구조물로 유지된다. 수동적 구조물은 골성 구조와 관절낭 및 측부인대들이 있으며 능동적 구조물은 주관절을 둘러싼 근육들이 해당된다. 이 구조물들이 유기적으로 작용하여 주관절의 안정성, 힘의 전달 그리고 운동을 유지한다. 결과 및 결론: 주관절의 생역학은 주관절 손상에 대한 수술적 치료에 대한 정보를 제공하며 새로운 주관절 인공대치물에 대한 개선 및 발전을 가져다 주며, 또한 주관절의 기초 연구에 기여 할 수 있는 학문이다.

용접잔류응력 이완 및 노치변형률법을 적용한 십자형 필렛용접 이음부의 피로수명 평가 (Fatigue Life Evaluation Based on Welding Residual Stress Relaxation and Notch Strain Approach for Cruciform Welded Joint)

  • 한정우;한승호;신병천;김재훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1103-1108
    • /
    • 2003
  • The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint.

  • PDF

후판 자동용접을 위한 용접물의 갭 측정 (Recognition of Gap between base Plates for Automated Welding of Thick Plates)

  • 이화조
    • 한국정밀공학회지
    • /
    • 제16권4호통권97호
    • /
    • pp.37-45
    • /
    • 1999
  • Many automated welding equipment are used in the industry. However, there are some problems to get quality welds because of the geometric error, thermal distortion, and incorrect joint fit-up. These factors can make the gap between base plates in case of a thick plate welding. The welding product with the quality welds can not be obtained without consideration of the gap. In this paper, the robot path and welding conditions are modified to get the quality weld by detecting the position and size of the gap. In this work, a low-priced laser range sensor is used. The 3-dimensional information is obtained using the motion of a robot, which holds a laser range sensor. The position and size of the gap is calculated using signal processing of the measured 3-dimensional information of joint profile geometry. The data measured by a laser range sensor is segmented by an iterative end point method. The segmented data is optimized by the least square method. The existence of gap is detected by comparing the data with the segmented shape of template. The effects of robot measuring speed and gap size are also tested. The recognizability fo the gap is verified as good by comparing the real joint profile and the calculated joint profile using the signal processing.

  • PDF

유전자 알고리즘을 이용한 GMA 필릿 용접 비드형상 예측에 관한 연구 (A Study on Bead Geometry Prediction the GMA Fillet Welding using Genetic Algorithm)

  • 김영수;김일수;이지혜;정성명;이종표;박민호
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.126-132
    • /
    • 2012
  • The GMA welding process involves large number of interdependent variables which may affect product quality, productivity and cost effectiveness. The relationships between process parameters for a fillet joint and bead geometry are complex because a number of process parameters are involved. To make the automated GMA welding, a method that predicts bead geometry and accomplishes the desired mechanical properties of the weldment should be developed. The developed method should also cover a wide range of material thicknesses and be applicable for all welding position. For the automatic welding system, the data must be available in the form of mathematical equations. In this study a new intelligent model with genetic algorithm has been proposed to investigate interrelationships between welding parameters and bead geometry for the automated GMA welding process. Through the developed model, the correlation between process parameters and bead geometry obtained from the actual experimental results, predicts that data did not show much of a difference, which means that it is quite suitable for the developed genetic algorithm. Progress to be able to control the process parameters in order to obtain the desired bead shape, as well as the systematic study of the genetic algorithm was developed on the basis of the data obtained through the experiments in this study can be applied. In addition, the developed genetic algorithm has the ability to predict the bead shape of the experimental results with satisfactory accuracy.

Sensitivity analysis for finite element modeling of humeral bone and cartilage

  • Bola, Ana M.;Ramos, A.;Simoes, J.A
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제3권2호
    • /
    • pp.71-84
    • /
    • 2016
  • The finite element method is wide used in simulation in the biomechanical structures, but a lack of studies concerning finite element mesh quality in biomechanics is a reality. The present study intends to analyze the importance of the mesh quality in the finite element model results from humeral structure. A sensitivity analysis of finite element models (FEM) is presented for the humeral bone and cartilage structures. The geometry of bone and cartilage was acquired from CT scan and geometry reconstructed. The study includes 54 models from same bone geometry, with different mesh densities, constructed with tetrahedral linear elements. A finite element simulation representing the glenohumeral-joint reaction force applied on the humerus during $90^{\circ}$ abduction, with external load as the critical condition. Results from the finite element models suggest a mesh with 1.5 mm, 0.8 mm and 0.6 mm as suitable mesh sizes for cortical bone, trabecular bone and humeral cartilage, respectively. Relatively to the higher minimum principal strains are located at the proximal humerus diaphysis, and its highest value is found at the trabecular bone neck. The present study indicates the minimum mesh size in the finite element analyses in humeral structure. The cortical and trabecular bone, as well as cartilage, may not be correctly represented by meshes of the same size. The strain results presented the critical regions during the $90^{\circ}$ abduction.

Influence of geometry and safety factor on fatigue damage predictions of a cantilever beam

  • Pecnik, Matija;Nagode, Marko;Seruga, Domen
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.33-41
    • /
    • 2019
  • The influence of two parameters on fatigue damage predictions of a variably loaded cantilever beam has been examined. The first parameter is the geometry of the cantilever beam and the weld connecting it to a rear panel. Variables of the geometry examined here include the cantilever length, the weld width on the critical cross-section and the angle of the critical cross-section. The second parameter is the safety factor, as set out by the Eurocode 3 standard. An analytical approach has been used to calculate the stresses at the critical cross-section and standard rainflow counting has been used for the extraction of the load cycles from the load history. The results here suggest that a change in the width and angle of the critical cross-section has a non-linear impact on the fatigue damage. The results also show that the angle of the critical cross-section has the biggest influence on the fatigue damage and can cause the weld to withstand fatigue better. The second parameter, the safety factor, is shown to have a significant effect on the fatigue damage calculation, whereby a slight increase in the endurance safety factor can cause the calculated fatigue damage to increase considerably.

유리섬유/폴리에스테르 복합재료 패널 접합부의 접착강도에 관한 표면성질의 효과 (Effect of Surface Properties on Adhesive Strength of Joint of Glass Fiber/Polyester Composite Panels)

  • 팜탄눗;염영진
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1591-1597
    • /
    • 2012
  • 복합재료 접합부의 접착강도에 대한 접착면 성질의 영향을 알아 보기 위해 불포화폴리에스테르, 우븐과 매트 유리섬유를 사용하여 복합재료 접합시편들을 제작하였다. 접착제, 복합재료 접착물, 말단접합과 이차접합 시편들의 기계적 성질을 실험에 의해 구하고 실험결과를 접합이론에 적용하였다. 6 개의 접합부들에서 발생하는 최대 및 평균 전단 응력은 최대 인장력과 접합 시편의 기하학적 변수들로부터 계산되었다. 실험 결과 접합면을 연마한 후 아세톤으로 처리한 경우가 말단접합의 3 가지 형태 중 가장 큰 강도를 가지고 있음이 관찰되었다. 마찬가지로 매트-매트와 매트-우븐 접합이 거의 같은 값으로 이차 접합의 3 가지 형태 중 가장 큰 강도를 가지고 있었다. 반대로 아무 처리도 하지 않은 접합시편과 우븐-우븐 접합시편은 매우 낮은 강도를 가졌다. 각각의 경우 파손은 접합부 양끝에서 심하게 발생하였고 접합부 가운데로 이동하였다.

Shear behavior of non-persistent joints in concrete and gypsum specimens using combined experimental and numerical approaches

  • Haeri, Hadi;Sarfarazi, V.;Zhu, Zheming;Hokmabadi, N. Nohekhan;Moshrefifar, MR.;Hedayat, A.
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.221-230
    • /
    • 2019
  • In this paper, shear behavior of non-persistent joint surrounded in concrete and gypsum layers has been investigated using experimental test and numerical simulation. Two types of mixture were prepared for this study. The first type consists of water and gypsum that were mixed with a ratio of water/gypsum of 0.6. The second type of mixture, water, sand and cement were mixed with a ratio of 27%, 33% and 40% by weight. Shear behavior of a non-persistent joint embedded in these specimens is studied. Physical models consisting of two edge concrete layers with dimensions of 160 mm by 130 mm by 60 mm and one internal gypsum layer with the dimension of 16 mm by 13 mm by 6 mm were made. Two horizontal edge joints were embedded in concrete beams and one angled joint was created in gypsum layer. Several analyses with joints with angles of $0^{\circ}$, $30^{\circ}$, and $60^{\circ}$ degree were conducted. The central fault places in 3 different positions. Along the edge joints, 1.5 cm vertically far from the edge joint face and 3 cm vertically far from the edge joint face. All samples were tested in compression using a universal loading machine and the shear load was induced because of the specimen geometry. Concurrent with the experiments, the extended finite element method (XFEM) was employed to analyze the fracture processes occurring in a non-persistent joint embedded in concrete and gypsum layers using Abaqus, a finite element software platform. The failure pattern of non-persistent cracks (faults) was found to be affected mostly by the central crack and its configuration and the shear strength was found to be related to the failure pattern. Comparison between experimental and corresponding numerical results showed a great agreement. XFEM was found as a capable tool for investigating the fracturing mechanism of rock specimens with non-persistent joint.

Application of Fractal Theory to Various Surfaces

  • Roh, Young-Sook;Rhee, In-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • 제18권1E호
    • /
    • pp.23-28
    • /
    • 2006
  • In this study, the general theory of fractality is discussed to provide a fundamental understanding of fractal geometry applied to heterogeneous material surfaces like pavement surface and rock surface. It is well known that many physical phenomena and systems are chaotic, random and that the features of roughness are found at a wide spectrum of length scales from the length of the sample to the atomic scales. Studying the mechanics of these physical phenomena, it is absolutely necessary to characterize such multi scaled rough surfaces and to know the structural property of such surfaces at all length scales relevant to the phenomenon. This study emphasizes the role of fractal geometry to characterize the roughness of various surfaces. Pavement roughness and rock surface roughness were examined to correlate their roughness property to fractality.