• 제목/요약/키워드: Joint geometry

검색결과 179건 처리시간 0.027초

DESIGN OF ADHESIVE BONDED JOINT USING ALUMINUM SANDWICH SHEET

  • PARK Y.-B.;LEE M.-H.;KIM H.-Y.;OH S.-I.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.657-663
    • /
    • 2005
  • Recently, weight reduction of vehicles has been of great interest, and consequently the use of composite materials in the automotive industry is increasing every year. Composite sandwich panels which consist of two skins and core materials are replacing steels in automotive floor and door. The substitution of one material for another is accompanied by change of joining method, so that adhesive bonding has been popularly used for joining method of composite materials. In the case of adhesive bonding of composite materials, there could be loss in the joint strength by delamination of two faceplates or cracking on faceplate. Thus, it is necessary to prevent loss in the joint strength by designing the joint geometry. In the present paper, adhesive bonding of aluminum sandwich sheet was tried. For understanding joint behavior, studies on stresses in the single lap joint were reviewed and failure modes of composite material were analyzed. Strength tests on the single lap joint consisting of aluminum sandwich sheet and steel were performed and variation of the joint strength with the joint configuration was shown. Based on these results, design guide of adhesive bonding in aluminum sandwich sheet was suggested.

가속냉각형 TMCP강재 대입열 용접부의 피로특성 (A Study on the Fatigue Characteristics of Accelerated Cooled TMCP Steel's Welded Joint with High Heat Input)

  • 윤중근;김희진
    • Journal of Welding and Joining
    • /
    • 제6권1호
    • /
    • pp.28-34
    • /
    • 1988
  • The fatigue test was carried out to evaluate the fatigue characteristics of the accelerated cooled (ACC) TMCP steel and its welded joint. From this study, it was confirmed that ACC TMCP steel has higher fatigue strength than conventional steels. After welding, however, the fatigue strength of ACC TMCP steel was deteriorated associated with HAZ softening when weld reinforcement was removed. On the other hand, with weld reinforcement, there is no effect of HAZ softening on the fatigue strength of welded joint because it is strongly dependant on the detail weld geometry i.e., stress concentration factor. Accordingly the fatigue strength of actual welded joint increases with decreasing the stress concentration factor of welded joint, regardless of HAZ softening.

  • PDF

틸팅차량용 Hybrid차체 접합체결부의 피로 특성 평가 (Fatigue Assessment of Hybrid Composite Joint for the Tilting Car Body)

  • 정달우;김덕재;조세현;서승일;최낙삼
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.260-263
    • /
    • 2005
  • Fatigue fracture behavior of a hybrid joint between side-panel and under-frame by riveting and adhesive bonding has been evaluated. Two kinds of joint specimens based on real geometry were fabricated for shearing test as well as bending test. Static and cyclic loadings were used for fatigue assessment. Fatigue fracture results obtained by such experiments were reflected in modifications of design parameters of the hybrid joint.

  • PDF

상완견관절의 안정적 구조에 관한 연구 (The study of stabilizing structure of the glenohumeral joints)

  • 이진희;김진상
    • The Journal of Korean Physical Therapy
    • /
    • 제12권3호
    • /
    • pp.433-444
    • /
    • 2000
  • The purpose is paper was to discuss current concepts related to anatomic stabilizing structures of the shoulder joint complex and their clinical relevance to shoulder instability. The clinical syndrome of shoulder instability represents a wide spectrum of symtoms and signs which may produce various levels of dysfunctions, from subtle subluxations to gross joint instability. The glenohumeral joint attains functional stability through a delicate and intricate interaction between the passive and active stabilizing structures. The passive constraints include the bony geometry, glenoid labrum, and the glenohumeral joint capsuloligaments structure. Conversely, the active constraints, also referred to as active mechanism, include the shoulder complex musculature, the projprioceptive system, and the musculoligamentous relationship. The interaction of the active and passive mechanism which provide passive and active glenohumeral joint stability will be throughtly discussed in this paper

  • PDF

차륜주행충격에 의한 빗살형 교량 신축이음장치 구조물의 과도진동해석 (Transient Response Analysis of a Comb Type Bridge Expansion Joint due to Travelling Wheel Impact)

  • 최영휴;김현욱;안영덕
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.69-74
    • /
    • 1997
  • In this paper we derive relations which describe the geometry and kinematics of contact between the travelling wheel and stepped comb joint. From which we can obtain the impulse, impulsive force and its time interval due to travelling wheel impact which can not be taken from Carter's model or Newland and Cassidy's. The calculated transient responses of the comb joint structure to travelling wheel impact reveals that the proposed wheel contact model and Carter's give very similar results but Newland Cassidy's model make a quite different results from the others.

  • PDF

Hot-spot 응력을 이용한 십자형 필렛 용접재의 피로강도 평가 (Fatigue Strength Assessment of the Cruciform Fillet Welded Joint Using Hot-spot Stress Approach)

  • 석창성;김대진;구재민;서정원;구병춘
    • 대한기계학회논문집A
    • /
    • 제29권11호
    • /
    • pp.1488-1493
    • /
    • 2005
  • In this study, fatigue tests to obtain S-N curves and FE analyses to obtain structural stress concentration factors were conducted for the two types of cruciform fillet welded joints, that is, load-carrying and non load-carrying types. Then we changed the obtained S-N curve of load carrying joint to that based on hot spot stress. As a result, the S-N curve of load carrying joint based on hot-spot stress was almost exactly coincided with that of non load-carrying joint based on nominal stress. So we have conducted that the fatigue strength of a welded joint with different geometry from the non stress distribution along the expected crack path.

STS429L 겹침 용접부의 파단 특성에 관한 연구 (A Study on Characteristic of Fracture in Lap Joint Welded STS429L)

  • 최동순;김재성;김현재;이보영
    • Journal of Welding and Joining
    • /
    • 제27권5호
    • /
    • pp.49-54
    • /
    • 2009
  • Recently, a demand of ferritic STS is increasing rapidly in automobile exhaust system. Exhaust manifolds are the part nearest to the engine so that the material is exposed to high temperature exhaust gas. Excellent heat resistant properties, especially high temperature strength, thermal fatigue resistance and high corrosion resistance are necessary for these parts. STS429L contains 15 weight percent of Cr and low Mo, so has good price competitive. And it has excellent high temperature strength and corrosion resistance, so receives attentions as material that applying to exhaust manifold. In tensile test of lap joint welded STS 429L, most of specimens are failed in base metal, but occurs brittle fracture in weld metals at some specimens in the face of good welding conditions. In the process of tensile test, lap joint welded STS429L specimens are transformed locally. The brittle fracture occurs that local transforming area exists in weld metals. But, butt welding specimens made by same materials showed ductile fracture in tensile test and bending test. In this study, suppose the reason of brittle fracture is in the combined local transform and tensile stress, through analysis of bead geometry, evaluate geometrical factor of brittle fracture in lap joint welded STS429L.

우리나라 주상절리에 대한 연구 전략 (Research Strategy on Columnar Joint in South Korea)

  • 안건상
    • 한국지구과학회지
    • /
    • 제35권7호
    • /
    • pp.501-517
    • /
    • 2014
  • 주상절리에 관한 최근 연구를 살펴본 결과, 우리나라에 분포하는 주상절리를 이해하고, 활용하기 위한 연구 방향은 다음과 같다; 칼러네이드와 엔테블러춰의 기하학적 형태, 형성 메커니즘과 패턴의 변화, 수평단면과 내부 구조, 주상절리 상하부의 판상절리, 전분 혼합액의 건조실험, 절리 형성에 대한 수치 모델 및 컴퓨터 그래픽 활용, 화산암의 산출 상태에 따른 주상절리 형태와 크기, 모암의 암석학적 및 광물학적 연구. 이와 더불어 지표에 노출된 후의 변질, 풍화작용의 결과로 만들어진 너덜겅, 토르, 타포니 등과 같은 2차적인 경관에 대한 기재도 필요하다. 이 연구는 우리나라 주상절리와 신생대 용암류를 해석하는 중요한 역할을 할 것이다. 또한 연구 성과는 지질관광의 활성화와 지질학습장 측면에서 활용도가 높을 것이다.

Simplified beam-column joint model for reinforced concrete moment resisting frames

  • Kanak Parate;Onkar Kumbhar;Ratnesh Kumar
    • Structural Engineering and Mechanics
    • /
    • 제89권1호
    • /
    • pp.77-91
    • /
    • 2024
  • During strong seismic events, inelastic shear deformation occurs in beam-column joints. To capture inelastic shear deformation, an analytical model for beam-column joint in reinforced concrete (RC) frame structures has been proposed in this study. The proposed model has been developed using a rotational spring and rigid links. The stiffness properties of the rotational spring element have been assigned in terms of a moment rotation curve developed from the shear stress-strain backbone curve. The inelastic rotation behavior of joint has been categorized in three stages viz. cracking, yielding and ultimate. The joint shear stress and strain values at these stages have been estimated using analytical models and experimental database respectively. The stiffness properties of joint rotational spring have been modified by incorporating a geometry factor based on dimensions of adjoining beam and column members. The hysteretic response of the joint rotational spring has been defined by a pivot hysteresis model. The response of the proposed analytical model has been verified initially at the component level and later at the structural level with the two actually tested RC frame structures. The proposed joint model effectively emulates the inelastic behavior precisely with the experimental results at component as well as at structural levels.

3차원 형상정보에 따른 생체모방형 무릎관절 구동의 변화 (The variation of biomimetic knee joint movement according to 3D shape information)

  • 정훈진;이승재
    • 한국산업정보학회논문지
    • /
    • 제20권3호
    • /
    • pp.81-86
    • /
    • 2015
  • 본 논문에서는 인체의 CT/MRI에서 단층 촬영된 무릎관절을 영상처리 과정을 거쳐 3차원 관절 모델을 제작하였다. 실제 무릎관절의 형상을 추출할 때 설정 조건에 따라 3차원 형상정보가 달라질 수 있다. 이러한 미세한 3차원 형상정보의 차이에 따른 무릎관절의 구동특성을 분석하기 위해 2가지의 관절 모델을 3차원 프린터를 이용하여 제작하였다. 제작된 관절모델을 이용하여 관절구동 시 압축력 실험을 수행하였고 형상의 차이에 따라 결과값의 차이가 발생하였다. 따라서 생체모방형 바이오리액터를 개발할 경우에는 형상정보의 차이에 대한 연구가 선행되어야 할 것으로 사료된다.