• Title/Summary/Keyword: Joint compression strength

Search Result 123, Processing Time 0.029 seconds

Compressive Strength of Horizontal Joints in Precast Concrete Large Panel System (대형 콘크리트 패널구조 수평접합부의 지지력 성능에 관한 연구)

  • 서수연;정봉오;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.138-147
    • /
    • 1994
  • The compressive strength of horizontal joints in precast concrete large panel structures depends on parameters such as grout and panel strength, detail of joint, joint moment, width of grout column, and etc. 44 specimens were tested to investigate the effects of parameters that influence the compressive strength of horizontal joints. The design formula specified in Korean Cock for compression horizontal joints must be reviewed, because it was based on the test results of the joint types not used in Korea. In this study comparing the test results, there fore, the validity of the design formulas was evaluated and a suitable formula was proposed to predict the ultimate strengths of compression horizontal joints. The increase of ultimate strengths was not observed, even if confined the horizontal displacement of slabs and reinforced the wall edge, when the grout strength is lower than panel strength. From the comparison of test results and those by the proposed formula, it was shown that proposed formula was suitable to predict the ultimate compressive strength of horizontal joints.

The Bending and Compression Strength Properties in Rhus verniciflua(I) (한국산 옻나무의 휨 및 종압축 강도적 성질(I))

  • Byeon, Hee-Seop;Shimada, Masahiro;Fushitani, Masami
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.95-99
    • /
    • 1996
  • The bending and compression strength properties of two types Rhus verniciflua specimens, which made of no heat-treated wood and heat-treated wood for urushiol extraction, were measured. The heat-treated specimens were finger-jointed with either resorcinol-phenol or polyurethane resin adhesives, and the vertical type bending strength property was also measured in these specimens. The results obtained are as follows ; 1. The correlation coefficient between the compression strength and specific gravity in the specimens of no heat-treated and heat-treated wood was high. However there was no difference in compression strength property as affected by heat treatment. 2 The correlation coefficient between the bending strength and specific gravity in the specimens of no heat-treated and heat-treated wood was also high. However, there was no difference in bending strength property as affected by heat treatment. 3 The bending test showed high correlation between modulus of elasticity and modulus of rupture for the specimens made of no heat-treated and heat-treated wood. However, there was no difference in bending strength property between the specimens made of heat-treated and no heat-treated wood. 4. The efficiencies of bending strength test on the finger-jointed specimens of heat-treated wood with resorcinol-phenol and polyurethane resin adhesives were 0.85, 0.81. respectively.

  • PDF

Strength and Efficiency during Lap Joining Molding of GMT-sheet

  • Kim, Jin-Woo;Kim, Hyoung-Seok;Kim, Tae-Ik;Lee, Dong-Gi;Sim, Jae-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.1018-1023
    • /
    • 2012
  • In order to substitute and recycle the existing automobile parts for GMT-sheet, researches on the effects of GMT-sheet on the establishment of precise joining strength, joining condition that are lap length of joining part, compression ratio, and closure speed must be carried out but until now. Besides, many researches on adhesion joint had been conducted until now but no systematic research on press lap joint of GMT-sheet has been implemented until recently and the reliability of joining strength is not yet established. In press lap joining molding of GMT-sheet, tensile stress and lap joining connection efficiency was increased according to the increase of lap length L. However, as the increase of compression ratio and fiber content ratio per unit area was higher in tensile test, it has caused the deterioration of lap joining efficiency after joining molding of GMT-sheet. Clarify joining strength and lap joining efficiency during high temperature compression press lap joining molding of GMT-sheet and research data regarding to the lap length of joining part was presented. The purpose of this study is to contribute to the substitution of existing products as well as usage development in non-automobile field and also to find out precise dynamic characteristics as designing data of structures.

Shear strength model for reinforced concrete beam-column joints based on hybrid approach

  • Parate, Kanak N.;Kumar, Ratnesh
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.377-398
    • /
    • 2019
  • Behavior of RC beam-column joint is very complex as the composite material behaves differently in elastic and inelastic range. The approaches generally used for predicting joint shear strength are either based on theoretical, strut-and-tie or empirical methods. These approaches are incapable of predicting the accurate response of the joint for entire range of loading. In the present study a new generalized RC beam-column joint shear strength model based on hybrid approach i.e. combined strut-and-tie and empirical approach has been proposed. The contribution of governing parameters affecting the joint shear strength under compression has been derived from compressive strut approach whereas; the governing parameters active under tension has been extracted from empirical approach. The proposed model is applicable for various conditions such as, joints reinforced either with or without shear reinforcement, joints with wide beam or wide column, joints with transverse beams and slab, joints reinforced with X-bars, different anchorage of beam bar, and column subjected to various axial loading conditions. The joint shear strength prediction of the proposed model has been compared with 435 experimental results and with eleven popular models from literature. In comparison to other eleven models the prediction of the proposed model is found closest to the experimental results. Moreover, from statistical analysis of the results, the proposed model has the least coefficient of variation. The proposed model is simple in application and can be effectively used by designers.

Shear failure and mechanical behavior of flawed specimens containing opening and joints

  • Zhang, Yuanchao;Jiang, Yujing;Shi, Xinshuai;Yin, Qian;Chen, Miao
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.587-600
    • /
    • 2020
  • Shear-induced instability of jointed rock mass has greatly threatened the safety of underground openings. To better understand the failure mechanism of surrounding rock mass under shear, the flawed specimens containing a circular opening and two open joints are prepared and used to conduct direct shear tests. Both experimental and numerical results show that joint inclination (β) has a significant effect on the shear strength, dilation, cracking behavior and stress distribution around flaws. The maximum shear strength, occurring at β=30°, usually corresponds to a unifrom stress state around joint and an intense energy release. However, a larger joint inclination, such as β=90°~150°, will cause a more uneven stress distribution and a stronger stress concentration, thus a lower shear strength. The stress distribution around opening changes little with joint inclination, while the magnitude varys much. Both compression and tension around opening will be greatly enhanced by the 30°-joints. In addition, a higher normal stress tends to enhance the compression and suppress the tension around flaws, resulting in an earlier generation and a larger proportion of shear cracks.

Experimental Study on the Behavior of Hybrid Beam-Column Joints Consisted of Reinforced Concrete Column and Steel Beam (철근콘크리트 기둥 및 철골보로 구성된 복합구조의 접합분 거동에 관한 실험적 연구)

  • Choi, Keun-Do;You, Young-Chan;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.297-304
    • /
    • 2003
  • This paper presents the test results of RCS(Reinforced Concrete Steel) beam-column joint with various types of transverse reinforcements such as small-column-type transverse reinforcements, four-piece ㄱ-shape assembled hoops and four-piece ㄱ-shape welded hoops. Five interior beam-column joint specimens were tested to examine the seismic performance and the shear strengths. From the test results, it was found that all the specimens sustained their strength at large levels of story drift(${\theta}$=0.035) without significant loss of strength and stiffness. Therefore it was concluded that the seismic performance and shear strength of the proposed RCS joint are at least the same as those of the specimen with conventional reinforcing details. Also, the contribution of the outer panel to the shear strength of the joint should be evaluated by the compression strut mechanism rather than compression field mechanism.

Finite element evaluation of the strength behaviour of high-strength steel column web in transverse compression

  • Coelho, Ana M. Girao;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.385-414
    • /
    • 2010
  • In current European Standard EN 1993, the moment-rotation characteristics of beam-to-column joints made from steel with a yield stress > 460MPa are obtained from elastic design procedures. The strength of the joint basic components, such as the column web subject to local transverse compression, is thus limited to the yield resistance rather than the plastic resistance. With the recent developments of higher strength steel grades, the need for these restrictions should be revisited. However, as the strength of the steel is increased, the buckling characteristics become more significant and thus instability phenomena may govern the design. This paper summarizes a comprehensive set of finite element parametric studies pertaining to the strength behaviour of high-strength steel unstiffened I-columns in transverse compression. The paper outlines the implementation and validation of a three-dimensional finite element model and presents the relevant numerical test results. The finite element predictions are evaluated against the strength values anticipated by the EN 1993 for conventional steel columns and recommendations are made for revising the specifications.

Effect of an Application of Pelvic Compression Belt on the Strength of Hip Flexor in Healthy Young Adult (골반벨트 적용이 건강 성인의 고관절 굴곡근 근력에 미치는 영향)

  • Yoon, Dong-Joon;Kim, Suhn-Yeop;Lee, Eun-Hee;Kim, Se-Lim;Oh, Duck-Won
    • Journal of Korean Physical Therapy Science
    • /
    • v.15 no.4
    • /
    • pp.35-42
    • /
    • 2008
  • Background : To assess the effect of a pelvic compression belt on the strength of hip flexor in healthy young individuals. Study design: Pre- and post-treatment measurement design on one factor was used. Methods : 30 healthy volunteers (male: 15, female: 15) participated in this study. Dynamometer was used to measure the strength of hip flexor, and measurements were performed before and after the application of the pelvic compression belt at neutral position of hip joint and at 30 cm raised position from floor with straight leg in supine. Results : After the application of the pelvic compression belt, the strengths of hip flexor measured at both positions were significantly increased when compared with before the application (p<.05). However, at neutral position of hip joint and at 30cm raised position from floor, there were significantly different in the changing patterns in the strengths of hip flexor between men and women (p>.05). Conclusion : The findings suggest that the pelvic compression belt is helpful in strengthening hip muscles. With easy application, it is sufficiently feasible for clinical use.

  • PDF

A Study on the Ultimate Load of Electric Transmission Tower Considering Member Strength and Joint Strength (부재 내력과 접합부 내력을 고려한 송전강관철탑의 극한하중 도출에 관한 연구)

  • Kim, Woo-Bum;Jeon, Bum-Jun;Suh, Yong-Pyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.435-443
    • /
    • 2010
  • The current design practice of an electric transmission tower is based on the allowable stress design. Design strengths of the electric transmission tower's compression member are determined by buckling the strength of the member itself without considering joint strength. There is a possibility of a joint failure prior to the buckling of a member. Therefore, in this study, joint strength is calculated for various member forces, and the shape of joint and database of strength were established. These data was compared with the member strength obtained from previous research studies based on an equivalent nonlinear analysis technique. Finally, practical evaluation and design method to distinguish failure mode in an electric transmission tower member is proposed.

Strength and Failure Mode Prediction of Mechanically Fastened Carbon/Epoxy Joints (탄소/에폭시 복합재료 구조물의 기계적 결합에 대한 강도 및 파손모드 예측)

  • 김기범;이미나;공창덕
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.111-121
    • /
    • 1997
  • An investigation was performed to study the predicting the joint strength of mechanical fasteners. Bearing failure is most important failure mode for designing joint. So in this study, the prediction method in consideration with bearing failure was chosen. In the proposed method, the characteristic length is combined with the Yamada-Sun failure criterion, Tsai-Hill failure criterion and characteristic length for Tension and Compression is determined from investigation. Especially the length of compression is determined from the "bearing failure test" that newly conceived to take bearing failure into consideration. The proposed prediction method was applied to quasi-isotropic carbon/epoxy joint showing net-tension and bearing failure experimentally. Good agreement was found between the predicted and experimental result for each joint geometry. geometry.

  • PDF