• Title/Summary/Keyword: Joint angle estimation model

Search Result 23, Processing Time 0.021 seconds

Development of Vision Control Scheme of Extended Kalman filtering for Robot's Position Control (실시간 로봇 위치 제어를 위한 확장 칼만 필터링의 비젼 저어 기법 개발)

  • Jang, W.S.;Kim, K.S.;Park, S.I.;Kim, K.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • It is very important to reduce the computational time in estimating the parameters of vision control algorithm for robot's position control in real time. Unfortunately, the batch estimation commonly used requires too murk computational time because it is iteration method. So, the batch estimation has difficulty for robot's position control in real time. On the other hand, the Extended Kalman Filtering(EKF) has many advantages to calculate the parameters of vision system in that it is a simple and efficient recursive procedures. Thus, this study is to develop the EKF algorithm for the robot's vision control in real time. The vision system model used in this study involves six parameters to account for the inner(orientation, focal length etc) and outer (the relative location between robot and camera) parameters of camera. Then, EKF has been first applied to estimate these parameters, and then with these estimated parameters, also to estimate the robot's joint angles used for robot's operation. finally, the practicality of vision control scheme based on the EKF has been experimentally verified by performing the robot's position control.

Shear behavior at the interface between particle and non-crushing surface by using PFC (PFC를 이용한 입자와 비파쇄 평면과의 접촉면에서의 전단 거동)

  • Kim, Eun-Kyung;Lee, Jeong-Hark;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.293-308
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. In order to investigate the effects of particle shape and crushing on particle/surface interface behavior, one ball, clump, and cluster models were created and their results were compared. The shape of particle was characterized by circle, triangle, square, and rectangle, respectively. The results showed that as the surface roughness increases, interface strength and friction angle increase and the void ratio increases. The one ball model with smooth surface shows lower interface strength and friction angle than the clump model with irregular surface. In addition, a cluster model has less interface strength and friction angle than the clump model. The failure envelope of the cluster model shows non-linear characteristic. From these findings, it is verified that the surface roughness and particle shape effect on the particle/surface interface shear behavior.

Surface roughness crushing effect on shear behavior using PFC (PFC를 이용한 평면 파쇄가 전단 거동에 미치는 효과)

  • Kim, Eun-Kyung;Jeong, Da-Woon;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.321-336
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness crushing on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. Particle shape was classified into one ball model of circular shape and 3 ball model of triangular shape. The surface shape was modelled by wall model of non-crushing surface and ball model of crushing surface. The results showed that as the bonding strength of ball model decreases, lower interface strength is induced. After the surface roughness crushing was occurred, the interface strength tended to converge and higher bonding strength induced lower surface roughness crushing. Higher friction angle was induced in wall model and higher surface roughness induced the higher friction angle. From these findings, it is verified that the surface roughness and surface roughness crushing effect on the particle/surface interface shear behavior.