• Title/Summary/Keyword: Joint Strength

Search Result 2,463, Processing Time 0.028 seconds

Characteristics of bending strength and residual stress distribution on high thermal cycle of ceramic and metal joint (세라믹/금속접합재의 고온 열사이클에 따른 잔류응력분포 및 굽힘강도 특성)

  • Park, Young-Chul;Hue, Sun-Chul;Boo, Myoung-Hwan;Kim, Hyun-Su;Kang, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1541-1550
    • /
    • 1997
  • Since the ceramic/metal joint material is made at a high temperature, the residual stress develops when it is cooled from bonding temperature to room temperature due to remarkable difference of thermal expansion coefficient between ceramic and metal. As residual stress at ceramic/metal joints influences the strength of joints, it is important to estimate residual stress quantitatively. In this study, it is attempted to estimate joint residual stress of Si$_3$N$_4$STS304 joints quantitatively and to compare the strength of joints. The difference of residual stress is measured when repeated thermal cycl is loaded, under the conditions of the practical use of the ceramic/metal joint. The residual stress increases at 1 cycle of thermal load but decreases in 3 cycles to 10 cycles of thermal load. And 4-point bending test is performed to examine the influence of residual stress on fracture strength. As a result, it is known that the stress of joint decreases as the number of thermal cycle increases.

A study on the vacuum brazing of carbon steels to a stainless steel (탄소강과 스테인리스강의 진공브레이징에 관한 연구)

  • 이창동;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1083-1091
    • /
    • 1988
  • Vacuum brazing is the most modern brazing process and is at present, far from being completely understood. By brazing under high vacuum, in an atmosphere free of oxidizing gases, a superior product with greater strength, ductility and uniformity can be obtained. In this study, the influence of brazing parameters such as base metal characteristics, joint clearance and brazing time were described in relation to the metallurgical phenomena and shear strength of vacuum-brazed joints between carbon steels and 304 stainless steel (SUS 304) brazed by copper filler metal. In copper brazing of SUS 304 to a medium carbon steel(M.C.S) the columnar Fe-Cr-Ni-Cu-C alloy structure was formed and grew from the M.C.S side and at the same time, the surface of M.C.S. was decarbonized. The driving force for the formation and growth of columnar structure was the difference of carbon content between base metals. As the joint clearance is narrower and brazing time is longer, the formation and growth of columnar phase and decarburization of carbon steels were more noticeable. Because of decarburization of carbon steels, the shear strength of brazed joints were reduced as the formation of columnar structure was increased.

Evaluation of the composite joint strength by the failure area index method (파괴면적지수법에 의한 복합재료 체결부의 강도평가)

  • 전영준;최진호;권진회
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.1-4
    • /
    • 2002
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joint have become a very important research area because they are often the weakest areas in composite structures. In this paper, the failure area index method to predict the strength of the mechanically fastened composite joint which has the same stacking sequence was suggested and evaluated. By the suggested failure area index method, the strength of the mechanically fastened composite joint could be predicted within 6.03%.

  • PDF

Parametric Study on the Joint Strength of Unidirectional and Fabric Hybrid Laminate (일방향-평직 복합재 혼합 적층판의 기계적 체결부 강도에 관한 인자연구)

  • 안현수;신소영;권진회;최진호;이상관;양승운
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.9-12
    • /
    • 2002
  • A parametric study has been conducted to investigate the effect of the geometry on the strength of an unidirectional and fabric hybrid laminated composite joint. Tests are conducted for the specimens with nine different edge-to-hole diameter or width-to-hole diameter ratios. For the finite element analysis, the characteristic length method is used, and the tests for determining the characteristic length are performed additionally. Nonlinear contact problem between the pin and laminate is modeled by the gap element in MSC/NASTRAN. Tsai-Wu failure criteria is applied to the stress on the characteristic curve. The finite element and experimental results shows good agreement in strength of composite joint. Results of the parametric study shows the effect of the geometry is remarkable in the specimens with width-to-hole diameter ratio less than 2.8 and edge-to-hole diameter ratio less than 1.4.

  • PDF

An Experimental Study on Column Penetration Joint of RC Column-Steel Beam (기둥관통형 RC 기둥-철골 보 접합부에 관한 실험적 연구)

  • 김승훈;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.475-480
    • /
    • 1998
  • The composite framed structures, consisting of RC columns and steel beams more popular in korea because of their efficiency and quality. However the force transfer mechanisms between the column and beam may by very complicated since the materials of columns and beams are different. This study develops "the column penetration joint" which the web of steel beam doesn't penetrate and which could improve the strength, deformation, and energy dissipation capacities compared to existing composite joints. It is the concrete-filled square tube joint with the exterior diaphragms and the cruciform stiffening plates. This study evaluated the strength of RC column penetration to steel beam connection by analyzing the results of partial experiments, and reviewed the applicability the strength formula through the comparison of tested results of joint experiment.

  • PDF

A Study on the strength of mechanically fastened composite joint (기계적으로 체결된 복합재료 조인트의 강도에 관한 연구)

  • 최진호;전영준;권진희
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2002
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joint have become a very important research area because they are often the weakest areas in composite structures. In this paper, the failure area index method to predict the strength of the mechanically fastened composite joint which has the same stacking sequence was suggested and evaluated. By the suggested failure area index method, the strength of the mechanically fastened composite joint could be predicted within 6.03%.

A study on the prediction of the joint strength using the failure area index method (파괴면적지수법을 이용한 조인트 강도 예측에 관한 연구)

  • 전영준;최진호;권진회;양승운;김광수
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.106-109
    • /
    • 2002
  • With the wide application of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joint have become a very important research area because they are often the weakest areas in composite structures. In this paper, the failure area index method to predict the strength of the mechanically fastened composite joint which has the same stacking sequence was used and evaluated. By the used failure area index method, the strength of the mechanically fastened composite joint which has the specimen of different shape and stacking sequence could be predicted within 9.96%.

  • PDF

Robust Design of an Automobile Ball Joint Considering the Worst-Case Analysis (차량용 볼조인트의 최악 조건을 고려한 강건 설계)

  • Sin, Bong-Su;Kim, Seong-Uk;Kim, Jong-Kyu;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.102-111
    • /
    • 2017
  • An automobile ball joint is the element for connecting the control arm and the knuckle arm, allowing rotational motion. The ball joint consists of the stud, plug, socket, and seat. These components are assembled through the caulking process that consists of plugging and spinning. In the existing research, the pull-out strength and gap stiffness were calculated, but we did not consider the uncertainties due to the numerical analysis and production. In this study, the uncertainties of material property and tolerance are considered to predict the distributions of pull-out strength and gap stiffness. Also, pull-out strength and gap stiffness are predicted as the a distribution rather than one deterministic value. Furthermore, a robust design applying the Taguchi method is suggested.

Strength evaluation of adhesive joint with thermal stress using ultrasonic signal processing method (열응력이 발생하는 접착이음부에서의 초음파 신호처리기법을 이용한 강도평가)

  • Oh, Seung-Kyu;Hawng, Yeong-Taik;Jang, Chul-Sub;Oh, Sun-Sae;Yi, Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.534-540
    • /
    • 2001
  • One approach to testing the suitability of an adhesive joint for a particular application is to build and test to destruct ion a representative sample of the joint. The nondestructive test will not measure strength directly but will measure a parameter which can be correlated to strength. It is therefore, essential that a suitable nondestructive test is chosen and that its results are correctly interpreted. In this paper, typical defects found in adhesive joints are described together with their significance. The limits and likely success of current physical nondestructive tests are described, and future trends outlined.

  • PDF

A Study on Fatigue Design for Welded Joint of STS301L (STS301L 용접종류별 이음재의 피로설계에 관한 연구)

  • Baek, Seung-Yeb
    • Journal of Welding and Joining
    • /
    • v.28 no.3
    • /
    • pp.86-91
    • /
    • 2010
  • Stainless steel sheets are widely used as the structural material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. For fatigue design of gas welded joints such as fillet and plug type joint, it is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of gas welded joints. And also, the influence of the geometrical parameters of gas welded joints on stress distribution and fatigue strength must be evaluated. the ${\Delta}P-N_f$ curves were obtained by fatigue tests. Using these results, ${\Delta}P-N_f$ curves were rearranged in the ${\Delta}{\sigma}-N_f$ relation with the maximum stress at the edge of fillet welded joint.