• 제목/요약/키워드: Joint Kinematic

검색결과 570건 처리시간 0.033초

산업용 FANUC robot의 kinematics와 inverse kinematics에 대한 연구 (A study on kinematics and inverse kinematics of industrial FANUC robot)

  • 박형준;한덕수;이쾌희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.551-556
    • /
    • 1991
  • This paper deal with the solution of kinematics and inverse kinematics of industrial FANUC robot by the bisection method with IBM PC 386. The inverse kinematics of FANUC robot cannot be solved by the algebraical method, because arm matrix T$_{6}$ is very complex and 6-joint angles are associated with the position and the approach of end-effector. Instead we found other 5-joint angle by an algebraical method after finding .theta.$_{4}$ value by a bisection method.d.

  • PDF

구형 3자유도 병렬 메커니즘의 기구학 해석 및 구현 (Kinematic Analysis and Implementation of a Spherical 3-Degree-of-Freedom Parallel Mechanism)

  • 이석희;김희국;오세민;소병록;이병주
    • 한국정밀공학회지
    • /
    • 제22권11호
    • /
    • pp.72-81
    • /
    • 2005
  • A new spherical-type 3-degree-of-freedom parallel mechanism consisting of a two degree-of-freedom parallel module and a serial module is proposed. Two alternative designs for the serial sub-chain are suggested and compared. The first design employs RU joint arrangement for the serial sub chain structure. The second design incorporates a gear chain to drive the distal revolute joint of the serial sub-chain from the base platform of the mechanism. This modification significantly improves kinematic characteristics of the mechanism within its workspace. Firstly, the closed-form solutions of both the forward and the reverse position analysis are derived. Secondly, the first-order kinematic model with respect to three inputs which are located at the base is derived. Thirdly, it is confirmed through simulation that the modified mechanism has much more improved isotropic characteristic throughout the workspace of the mechanism. Lastly, the proposed mechanism is implemented to verify the results from this analysis.

Single-Plane Fluoroscopic Three-Dimensional Kinematics of Normal Stifle Joint in Beagle Dogs

  • Kim, Hyungkyoo;Jeong, Jaemin;Seo, Jeonhee;Lee, Young-Won;Choi, Ho-Jung;Park, Jiyoung;Jeong, Seong Mok;Lee, Haebeom
    • 한국임상수의학회지
    • /
    • 제34권5호
    • /
    • pp.318-324
    • /
    • 2017
  • The objective of this study was to establish kinematic reference ranges for the femorotibial (FT) joint and the patellofemoral (PF) joint in healthy small-breed dogs by measuring 3D kinematics at the walk. Single-plane fluoroscopy was used to image the stifle joints of five healthy beagle dogs while the dogs were walking. 3D bone models of the femur, patella, and tibia were reconstructed by computed tomography scanning of the beagle dogs' hind limbs. The shape-matching technique was used to measure kinematic data from the fluoroscopic images and the 3D bone models. The cranial translation of the tibia during walking was inversely proportional to the FT joint flexion. There were significant correlations between the patellar motion and the tibial motion. The FT joint flexion had a strong correlation with the patellar proximodistal translation and flexion. Additionally, the tibial mediolateral translation had a strong correlation with the patellar shift and tilt. In this study, normal in vivo 3D FT joint and PF joint kinematics were demonstrated, and the average kinematic parameters were determined in walking beagle dogs.

Effects of the Patellar Tendon Strap on Kinematics, Kinetic Data and Muscle Activity During Gait in Patients With Chronic Knee Osteoarthritis

  • Eun-Ji Lee;Ki-Song Kim;Young-In Hwang
    • 한국전문물리치료학회지
    • /
    • 제30권2호
    • /
    • pp.110-119
    • /
    • 2023
  • Background: Osteoarthritis is a common condition with an increasing prevalence and is a common cause of disability. Osteoarthritic pain decreases the quality of life, and simple gait training is used to alleviate it. Knee osteoarthritis limits joint motion in the sagittal and lateral directions. Although many recent studies have activated orthotic research to increase knee joint stabilization, no study has used patellar tendon straps to treat knee osteoarthritis. Objects: This study aimed to determine the effects of patellar tendon straps on kinematic, mechanical, and electromyographic activation in patients with knee osteoarthritis. Methods: Patients with knee osteoarthritis were selected. After creating the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), leg length difference, Q-angle, and thumb side flexion angle of the foot were measured. Kinematic, kinetic, and muscle activation data during walking before and after wearing the orthosis were viewed. Results: After wearing the patellar tendon straps, hip adduction from the terminal stance phase, knee flexion from the terminal swing phase, and ankle plantar flexion angle increased during the pre-swing and initial swing phases. The cadence of spatiotemporal parameters and velocity increased, and step time, stride time, and foot force duration decreased. Conclusion: Based on the results of this study, the increase in plantar flexion after strap wearing is inferred by an increase due to neurological mechanisms, and adduction at the hip joint is inferred by an increase in adduction due to increased velocity. The increase in cadence and velocity and the decrease in gait speed and foot pressure duration may be due to joint stabilization. It can be inferred that joint stabilization is increased by wearing knee straps. Thus, wearing a patellar tendon strap during gait in patients with knee osteoarthritis influences kinematic changes in the sagittal plane of the joint.

신경회로망을 이용한 기구학적 자코비안의 불확실성 보상 알고리즘 (Kinematic jacobian uncertainty compensation using neural network)

  • 정슬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1820-1823
    • /
    • 1997
  • For the Cartesian space position controlled robot, it is required to have the accurate mapping from the Cartesian space to the joint space in order to command the desired joint trajectories correctly. since the actual mapping from Cartesian space to joint space is obtained at the joint coordinate not at the actuator coordinate, uncertainty in Jacobian can be present. In this paper, two feasible neural network schemes are proposed to compensate for the kinematic Jacobian uncertainties. Uncertainties in Jacobian can be compensated by identifying either actuator Jacobian off-line or the inverse of that in on-line fashion. the case study of the stenciling robot is examined.

  • PDF

여유자유도를 갖는 로보트의 관절변수의 위치 및 속도 제한범위 회피를 위한 기구학적 제어방법 (A Kinematic Control Method of Redundant Manipulator for the Avoidance of Joint Position and Velocity Limits)

  • 한석균;서일홍;임준홍
    • 대한전자공학회논문지
    • /
    • 제25권6호
    • /
    • pp.598-605
    • /
    • 1988
  • A kinematic control method for the redundant robot manipulator is proposed, where redundancy is utilized to avoid the limit of joint positions and velocities. For the given tadk, the joint positions are obtained in such a way that each joint is placed as close to its center point as possible by considering the velocity limit. The robot is, therefore, controlled so that the joints move with the acceptable velocities and lie within the reachable ranges. To show the validities of the proposed method, two examples are illustrated by computer simulations for the RHINO-XR robot with sliding base.

  • PDF

싱글암형 팬터그래프 구조설계를 위한 기구해석기법 개발 (Development of Kinematic Analysis Technique for Structural Design of Single Arm type Pantograph)

  • 정경렬;박수홍;김휘준;배정찬
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.610-618
    • /
    • 2001
  • Pantograph, which collects current from cartenary system, is one of the important parts of high-speed train. Kinematic analysis is one of the key technologies for pantograph design and includes joint trajectories, reaction forces, and the required moment of main shaft calculations. The kinematic analysis, however, is very complex and time-consuming process. In this study PC based pantograph kinematic analysis software using graphical user interface tool was developed for the easy evaluations of kinematic characteristics necessary in pantograph design process.

Kinematic Comparative Analysis of Long Turns between Experienced and Inexperienced Ski Instructors

  • Jo, Hyun Dai
    • 한국운동역학회지
    • /
    • 제30권1호
    • /
    • pp.17-25
    • /
    • 2020
  • Objective: The purpose of this study is to provide a better understanding of long turn mechanism by describing long turns after kinematic analysis and provide skiers and winter sports instructors with data through which they are able to analyze right postures for turns in skiing in a systematic, rational and scientific manner. Method: For this, a mean difference of kinematic variables (the center of gravity (CG) displacement of distance, trajectory, velocity, angle) was verified against a total of 12 skiers (skilled and unskilled, 6 persons each), regarding motions from the up-start to down-end points for long turns. Results: First, concerning the horizontal displacement of CG during a turn in skiing, skilled skiers were positioned on the right side at the upstart and edge-change points at a long turn. There was no difference in anteroposterior and vertical displacements. Second, in terms of CG-trajectory differences, skilled skiers revealed a significant difference during a long turn. Third, regarding skiing velocity, skilled skiers were fast at the edge-change and maximum inclination points in long turns. Fourth, there was no difference in a hip joint in terms of a lower limb joint angle. In a knee joint, a large angle was found at the up-start point among skilled skiers when they made a long turn. Conclusion: In overall, when skilled and unskilled skiers were compared, to make a good turn, it is required to turn according to the radius of turn by reducing weight, concerning the CG displacement. Regarding the CG-trajectory differences, the edge angle should be adjusted via proper inclination angulation. In addition, a skier should be more leaned toward the inside of a turn when they make a long turn. In terms of skiing velocity, it is needed to reduce friction on snow through the edging and pivoting of the radius or turn according to curvature and controlling ski pressure. Regarding a lower limb joint angle, it is important to make an up move by increasing ankle and knee angles instead of keeping the upper body straight during an up motion.

엄지발가락가쪽휨증의 엄지벌림근 전기자극 시 첫 번째 발허리발가락관절의 운동형상학적 움직임 분석 (Analysis of Kinematic Motions of First Metatarsophalangeal Joint during Electrical Stimulation of Abductor Hallucis Muscle in Subjects with Hallux Valgus)

  • 김문환;고은경;정도영
    • The Journal of Korean Physical Therapy
    • /
    • 제24권4호
    • /
    • pp.276-281
    • /
    • 2012
  • Purpose: The purpose of this study is to compare the kinematic motion of the first metatarsophalangeal (MTP) joint during an electrical stimulation of abductor hallucis (AbdH) muscle, between the normal group and the hallux valgus (HV) group. Methods: A total of twenty subjects (normal group=10 and HV group=10) participated in this study. The kinematic motions of first MTP joint was measured by using 3-dimensional motion analysis during an electrical stimulation in the sitting position. The intensity of an electrical stimulation was set to be tolerated in each subject, and the data of kinematic motions were collected in three trials of 5 seconds. An independent t-test was used to compare the angle of flexion and abduction of the first MTP joint and proximal phalanx in frontal plane, between the normal and HV groups. Results: Participants showed that the angle of flexion was significantly greater in the HV group ($13.12{\pm}10.61^{\circ}$), compared to that of the normal group ($10.17{\pm}2.31^{\circ}$); and the angle of abduction was significantly smaller in the HV group ($10.61{\pm}4.99^{\circ}$) than that of the normal group. Also, the angle of the proximal phalanx in frontal plane was significantly smaller, compared to the normal group ($53.42{\pm}10.70^{\circ}$) (p<0.05). Conclusion: These findings suggest that dysfunction of AbdH muscle is apparent in HV deformity and provide insight into potential risk factors for the development of HV deformity.

굴삭기의 저크현상 시뮬레이션을 위한 기구동역학 모델링 및 해석 (Kinematic and Dnamic Modeling and Analysis for Jerk Simulation of the Excavator)

  • 임홍재;성상준;이규령;유영석;최준업;이동욱;이승구
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.40-44
    • /
    • 1998
  • In this paper, a kinematic and dynamic model for an excavator is presented. A graphic user interface program for kinematic-dynamic analysis for the excavator is developed. To predict the stiffness and damping properties of the joint between the vehicle and the track, a parameter study is executed. Using the predicted joint stiffness and damping, the jerk simulation for the excavator is reproduced. Simulation results are compared with the test results to confirm the validity of the simulation model.

  • PDF