• 제목/요약/키워드: Joint Action

Search Result 278, Processing Time 0.479 seconds

Predicting the Human Multi-Joint Stiffness by Utilizing EMG and ANN (인공신경망과 근전도를 이용한 인간의 관절 강성 예측)

  • Kang, Byung-Duk;Kim, Byung-Chan;Park, Shin-Suk;Kim, Hyun-Kyu
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • Unlike robotic systems, humans excel at a variety of tasks by utilizing their intrinsic impedance, force sensation, and tactile contact clues. By examining human strategy in arm impedance control, we may be able to teach robotic manipulators human''s superior motor skills in contact tasks. This paper develops a novel method for estimating and predicting the human joint impedance using the electromyogram(EMG) signals and limb position measurements. The EMG signal is the summation of MUAPs (motor unit action potentials). Determination of the relationship between the EMG signals and joint stiffness is difficult, due to irregularities and uncertainties of the EMG signals. In this research, an artificial neural network(ANN) model was developed to model the relation between the EMG and joint stiffness. The proposed method estimates and predicts the multi joint stiffness without complex calculation and specialized apparatus. The feasibility of the developed model was confirmed by experiments and simulations.

  • PDF

An Experimental Study on the Fatigue Behavior of T-Type Tension Joints with High Tension Bolt (고장력볼트 T-인장이음의 피로거동에 관한 실험적 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.6
    • /
    • pp.459-465
    • /
    • 2016
  • In this paper, it was performed the fatigue test to examine the effect of cyclic loading for the simple T-joint. Axial force of bolt by clamping and the change of the force by applied load were measured in the joint. And the bolt force, the failure mode and the fatigue strength under cyclic loading were investigated. The parameters of the tension joint were set to be the flange thickness and the diameter of bolt to a different stiffness of the joint in response to the combination. From the fatigue test, failure mode of tensile joints under cyclic loading could be evaluated using a static ultimate load of the specific failure mode in EC3. The fatigue strength of the tension joints was considerably higher than the fatigue strength of the EC3(36) that does not consider a lever action. However, the additional axial force by lever action occurs to an increase in the axial force of the bolt it requires a careful evaluation of the fatigue strength.

LSTM(Long Short-Term Memory)-Based Abnormal Behavior Recognition Using AlphaPose (AlphaPose를 활용한 LSTM(Long Short-Term Memory) 기반 이상행동인식)

  • Bae, Hyun-Jae;Jang, Gyu-Jin;Kim, Young-Hun;Kim, Jin-Pyung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.5
    • /
    • pp.187-194
    • /
    • 2021
  • A person's behavioral recognition is the recognition of what a person does according to joint movements. To this end, we utilize computer vision tasks that are utilized in image processing. Human behavior recognition is a safety accident response service that combines deep learning and CCTV, and can be applied within the safety management site. Existing studies are relatively lacking in behavioral recognition studies through human joint keypoint extraction by utilizing deep learning. There were also problems that were difficult to manage workers continuously and systematically at safety management sites. In this paper, to address these problems, we propose a method to recognize risk behavior using only joint keypoints and joint motion information. AlphaPose, one of the pose estimation methods, was used to extract joint keypoints in the body part. The extracted joint keypoints were sequentially entered into the Long Short-Term Memory (LSTM) model to be learned with continuous data. After checking the behavioral recognition accuracy, it was confirmed that the accuracy of the "Lying Down" behavioral recognition results was high.

The granite in Korean peninsula and its Geotechnical characteristics (한반도에 분포하는 화강암과 화강암반의 지질공학적 특성)

  • Lee, Byung-Joo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.875-883
    • /
    • 2008
  • The amount of granite distribution area occupies about 40 - 50% of Korean Peninsula. The granite irregularly Intruded through preCambrian to Tertiary times but in Jurassic time so called, Daebo granite most widely crops out in Korean Peninsula. In addition to Bulkuksa Grante which intruded at Cretaceous time crops out at the southern part of Korean Peninsula and in northern part Triassic Songrim Granite is distributed. These granites have equigranular texture and are relatively isotropic. Their uniaxial compressive strength is above $1,500kg/cm^2$ and also seismic velocity is over 2,000m/sec. When these rocks receive a weathering action, the feldspar weathers first and the quartz grains remain plentifully to make the "Masato(Korean name)". Also when the granite receives a weathering action, quite often it make sheeting joint which is topographically parallel to the earth surface and also make a (so called, onion structure. These weathering phenomena easily make a land sliding when it is heavy rain and weathering surface is irregular.

  • PDF

Equivalent moment of inertia of a truss bridge with steel-concrete composite deck

  • Siekierski, Wojciech
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.801-813
    • /
    • 2015
  • Flexural stiffness of bridge spans has become even more important parameter since Eurocode 1 introduced for railway bridges the serviceability limit state of resonance. For simply supported bridge spans it relies, in general, on accurate assessment of span moment of inertia that governs span flexural stiffness. The paper presents three methods of estimation of the equivalent moment of inertia for such spans: experimental, analytical and numerical. Test loading of the twin truss bridge spans and test results are presented. Recorded displacements and the method of least squares are used to find an "experimental" moment of inertia. Then it is computed according to the analytical method that accounts for joint action of truss girders and composite deck as well as limited span shear stiffness provided by diagonal bracing. Finally a 3D model of finite element method is created to assess the moment of inertia. Discussion of results is given. The comparative analysis proves efficiency of the analytical method.

Analysis of Joint Behavior in Cement Concrete Pavements (시멘트 콘크리트 포장체 줄눈부의 거동해석)

  • 변근주;이상민;임갑주;한봉완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.1-6
    • /
    • 1990
  • Joints are provided in cement concrete pavements to control transverse and longitudinal cracking that occur due to restrained deformations caused by moisture and temperature variations in the slab. But the construction of joints reduces the load-carrying capacity of the pavement at the joints, and pavements have beem deteriorated by cracks at the slab edges along the joints due to traffic loads. Therefore, it is important to analyze the behavior of joints accurately in the design of cement concrete pavements. In this study, the mechanical behavior of cement concrete pavement slabs is analyzed by the plate-finite element model, and Winkler foundation model is adopted to analyze the subgrades. The load transfer mechanism of joints are composed of dowel action, aggregate interlocking, and tied-key action, and the analytical program is developed using these joint models.

  • PDF

Analysis of Human Arm Movement During Vehicle Steering Maneuver

  • Tak, Tae-Oh;Kim, Kun-Young;Chun, Hyung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.444-451
    • /
    • 2005
  • The analysis of human arm motion during steering maneuver is carried out for investigation of man-machine interface of driver and steering system Each arm is modeled as interconnection of upper arm, lower arm, and hand by rotational joints that can properly represents permissible joint motion, and both arms are connected to a steering wheel through spring and damper at the contact points. The joint motion law during steering motion is determined through the measurement of each arm movement, and subsequent inverse kinematic analysis. Combining the joint motion law and inverse dynamic analysis, joint stiffness of arm is estimated. Arm dynamic analysis model for steering maneuver is setup, and is validated through the comparison with experimentally measured data, which shows relatively good agreement. To demonstrate the usefulness of the arm model, it is applied to study the effect of steering column angle on the steering motion.

A RESEARCH ANALYSIS ON EFFECTIVE LEARNING IN INTERNATIONAL CONSTRUCTION JOINT VENTURES

  • L.T. Zhang;W.F. Wong;Charles Y.J. Cheah
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.450-458
    • /
    • 2007
  • This paper presents the results of a statistical analysis and its research findings focusing on the learning aspect in the process of international joint ventures (IJVs). The contents of this paper is derived from a sample of 96 field cases based on a proposed conceptual model of effective learning for international construction joint ventures (ICJVs). The paper presents a brief review on the conceptual model with hypotheses and summarized the key results of statistical analysis including factor and multiple regression analysis for the testing of the validity of the proposed conceptual model and its associated research hypotheses. Among other research findings, the research confirms that ICJVs provides an excellent platform of in-action learning for construction organization and suggests that good outcomes in learning could be reaped by a company who has a clear learning intent from the beginning and subsequently take corresponding learning actions during the full process of the joint venture.

  • PDF

Small Firms' Adoption Intention of Inter-Firm Electronic Linkages (소기업의 기업간 전자적 연결 도입 의도에 관한 연구: 기대 가치와 거래 관계 특성의 관점)

  • Lee, Won-Jun;Kang, Youn-Jung;Kim, Kil-Sun
    • Asia pacific journal of information systems
    • /
    • v.15 no.2
    • /
    • pp.171-193
    • /
    • 2005
  • Small firms are considered as the last mile in electronic networks of business enterprises. Since small firms lack in their resources and capabilities for IT deployment, it seems a challenging project to make them electronically linked to their trading partners. This study aims to investigate the factors that influence the intent of small firms to adopt electronic linkage to their trading partners. This study considers the context where small firms already have transaction relationships with partner firms and where their adoption of electronic linkage may influence the nature and performance of the transactional relationships. This study considers the expected value of electronic linkage and the joint actions of the trading firms as the major factors. Its research model also includes traditional factors such as influences from the industry and the trading partner, the support of CEO, and the readiness of the trading partner. Based on the survey data from more than 1000 small firms, the present study performs regression analysis and finds that all but one factor are significant in explaining the variations in the adoption intention of small firms. The exception is the joint action, which is shown to decrease the intention. Based on the results, this study offers business and policy implications that would be useful to business managers and policy makers.

The investigation of rock cutting simulation based on discrete element method

  • Zhu, Xiaohua;Liu, Weiji;Lv, Yanxin
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.977-995
    • /
    • 2017
  • It is well accepted that rock failure mechanism influence the cutting efficiency and determination of optimum cutting parameters. In this paper, an attempt was made to research the factors that affect the failure mechanism based on discrete element method (DEM). The influences of cutting depth, hydrostatic pressure, cutting velocity, back rake angle and joint set on failure mechanism in rock-cutting are researched by PFC2D. The results show that: the ductile failure occurs at shallow cutting depths, the brittle failure occurs as the depth of cut increases beyond a threshold value. The mean cutting forces have a linear related to the cutting depth if the cutting action is dominated by the ductile mode, however, the mean cutting forces are deviate from the linear relationship while the cutting action is dominated by the brittle mode. The failure mechanism changes from brittle mode with larger chips under atmospheric conditions, to ductile mode with crushed chips under hydrostatic conditions. As the cutting velocity increases, a grow number of micro-cracks are initiated around the cutter and the volume of the chipped fragmentation is decreasing correspondingly. The crack initiates and propagates parallel to the free surface with a smaller rake angle, but with the rake angle increases, the direction of crack initiation and propagation is changed to towards the intact rock. The existence of joint set have significant influence on crack initiation and propagation, it makes the crack prone to propagate along the joint.