• Title/Summary/Keyword: Joining strength

Search Result 1,110, Processing Time 0.017 seconds

A study on the improvement of coating film characteristic in arc spraying by using the inert gas (아크용사시 불활성가스에 의한 피막밀착강도 향상에 관한 연구)

  • 김영식;여욱종
    • Journal of Welding and Joining
    • /
    • v.5 no.2
    • /
    • pp.17-26
    • /
    • 1987
  • In this study, the experiments were carried out for the purpose of establishment of the arc sparing method which reducing oxides or oxide film by using the inert gas as the carrier gas of atomizing particles. Main results obtained are as follows; 1. Oxides and oxide film which lower the adhesion strength are largely reduced by using the inert gas as the carrier gas of atomizing particles, and adhesion strength of coating film are improved. 2. The coating film characteristics appear to be no difference between the inert gas arc spraying in air environment and that in argon gas environment. 3. Inert gas arc spraying using argon as the carrie gas has higher reduction rate of composition element in coating film than compressed air spraying does.

  • PDF

Microstructural Changes on Weld Heat Input in $60kg/mm^2$ Quenched and Tempered High Strength Steel ($60kg/mm^2$급 조질고장력강의 용접입열량에 따른 미세조직변화)

  • 김은석;정인상;박경채
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.79-90
    • /
    • 1993
  • Shielded metal arc welding, one-ploe and two-pole submerged arc welding were accomplished to investigate microstructure changes on phase transformation behavior in $60kg/mm^2$ quenched and tempered high strength steel. Microstructures were examined by optical micrograph and TEM. In shielded metal arc welding (oxygen 250ppm), the inclusions were small size (0.3-0.5$\mu\textrm{m}$)and small in number. In submerged arc welding (oxygen 430-529ppm), the inclusions were larger(0.7-2$\mu\textrm{m}$) than that of shielded metal arc welding and large in number. Microstructure mainly depends on number and distribution of inclusions in fusion zone of weld metal. It was noticed that a limited number of inclusions favors the formation of acicular ferrite.

  • PDF

Effect of chemical composition on the weldability of quenched and tempered high strength steels (주질고장력강의 용접성에 미치는 화학조성의 영향)

  • 장웅성;김숙환;장래웅;엄기원
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.27-36
    • /
    • 1988
  • In fabrication of various welded structures made of high strength steels, the occurence of hydrogen assisted cracking and embrittlement in HAZ is prime importance. The present work was carried out to clarify the effect of chemical compositions, especially B and/or Ti addition on the cold cracking susceptibility and HAZ embrittlement in low crabon equivalent steel. Tests results showed that the addtio of optimum boron content in steel with low Pem value i.e., below 0.20 % was the best way to improve the weldability as well as the mechanicla properties of $60kg/mm^2$ grade quenched and tempered high strength steels.

  • PDF

A study on the development of Ti-Cu-Ni-Si insert metal for Ti alloys (Ti합금 접합용 Ti-Cu-Ni-Si계 삽입금속의 개발에 관한 연구)

  • 김경미;우인수;강정윤;이상래
    • Journal of Welding and Joining
    • /
    • v.14 no.1
    • /
    • pp.47-56
    • /
    • 1996
  • The purpose of this study is to develope an insert metal which can be brazed at lower temperature than the conventionally used insert metal and provide higher strength joint than base metal. In the review of binary phase diagram concerning Ti, Cu and Ni resulted in the discovery of Si having eutectic composition with them. The microstructure and the distribution of elements in reaction zone between CP Ti and insert metal were investigated by Optical Microscopy, SEM/EDX, EPMA, X-RAY. The newly developed insert metal is Ti-15wt%Cu-18wt%Ni-2wt%Si, which can yield the lower brazing temperature(1183K) compared with the conventional Ti-Cu-Ni system insert metal. The joints with this insert metal had tensile strength of 385MPa in the bonding temperature range of 1183K to 1243K.

  • PDF

Joinability of Tool Steels by TLP Bonding (천이액상확산접합에 의한 합금공구강의 접합특성)

  • 권병대;이원배;김봉수;홍태환;서창제;정승부
    • Journal of Welding and Joining
    • /
    • v.21 no.4
    • /
    • pp.69-74
    • /
    • 2003
  • The mechanical properties of STD11 Joints by using TLP (Transient Liquid Phase Diffusion) bonding method employing MBF-30 and MBF-80 insert metals were investigated with concerning to the microstructural change. TLP bonding of STD 11 was carried out at 1323∼1423K for 0.6ks∼3.6ks in vacuum. The microstructure and the element distribution of the interlayer between tool steels and insert metals showed specific feature with bonding conditions. It was found that the width of the interlayer increased at initial bonding stage. However, the width of interlayer showed nearly constant value during the isothermal solidification. After isothermal solidification was completed, the joint showed homogeneous element distribution and similar microstructure with base metal because of the grain boundary migration to the bonded interlayer. The bonding strength measured by a tensile test has been varied with the bonding conditions. The maximum joint strength, 760MPa, was obtained with the condition of 1423K for 1.2ks using MBF30 insert metal in this experiment.

Optimization of Process Parameters Using a Genetic Algorithm for Process Automation in Aluminum Laser Welding with Filler Wire (용가 와이어를 적용한 알루미늄 레이저 용접에서 공정 자동화를 위한 유전 알고리즘을 이용한 공정변수 최적화)

  • Park, Young-Whan
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.67-73
    • /
    • 2006
  • Laser welding is suitable for welding to the aluminum alloy sheet. In order to apply the aluminum laser welding to production line, parameters should be optimized. In this study, the optimal welding condition was searched through the genetic algorithm in laser welding of AA5182 sheet with AA5356 filler wire. Second-order polynomial regression model to estimate the tensile strength model was developed using the laser power, welding speed and wire feed rate. Fitness function for showing the performance index was defined using the tensile strength, wire feed rate and welding speed which represent the weldability, product cost and productivity, respectively. The genetic algorithm searched the optimal welding condition that the wire feed rate was 2.7 m/min, the laser power was 4 kW and the welding speed was 7.95 m/min. At this welding condition, fitness function value was 137.1 and the estimated tensile strength was 282.2 $N/mm^2$.

Microstructure and Mechanical Property in the Weld Heat-affected Zone of V-added Austenitic Fe-Mn-Al-C Low Density Steels

  • Moon, Joonoh;Park, Seong-Jun
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.31-34
    • /
    • 2015
  • Microstructure and tensile property in the weld heat-affected zone (HAZ) of austenitic Fe-Mn-Al-C low density steels were investigated through transmission electron microscopy analysis and tensile tests. The HAZ samples were prepared using Gleeble simulation with high heat input welding condition of 300 kJ/cm, and the HAZ peak temperature of $1200^{\circ}C$ was determined from differential scanning calorimetry (DSC) test. The strain- stress responses of base steels showed that the addition of V improved the tensile and yield strength by grain refinement and precipitation strengthening. Tensile strength and elongation decreased in the weld HAZ as compared to the base steel, due to grain growth, while V-added steel had a higher HAZ strength as compared than V-free steel.

Development of Structural Steel and Trend of Welding Technology (건설용 강재개발 및 용접기술동향)

  • Kim, Sung Jin;Jeong, Hong Chul
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.7-20
    • /
    • 2016
  • A brief overview is given of the development of various structural steels and their welding application technology. Firstly, the general characteristics and welding performance of structural steels used in architecture and bridge are introduced. For safety against earthquakes or strong wind, and for highly efficient welding in high-rise building constructions, ultra high strength steel with tensile strength over 800 MPa or high HAZ toughness steel plates under high heat input welding have been developed. In particular, efficient welding technology ensuring high resistance to cold and hot cracking of ultra high strength steel is reviewed in the present paper. Secondly, various coated steels used mainly for outer part in construction are briefly discussed. Moreover, a major drawback of coated steel during welding operation, and several solutions to overcome such technical problem are proposed. It is hoped that this review paper can lead to significant academic contributions and provide readers interested in the structural steels with useful welding technology.

Friction Welding of Cr-Mo Steel Bars for Hydraulic of Pneumatic Valve Spools and AE Evaluation (유공압 밸브스풀용 Cr-Mo 강봉의 동종재 마찰용접과 AE평가)

  • ;;Oh, S. K.;Jang, H. K.
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.103-112
    • /
    • 1995
  • This study was performed to optimize friction welding conditions of Cr-Mo steel bars used for hydraulic of pneumatic valve spools and to realize the real-time evaluation of weld quality by acoustic emission method. SNCM220, SCM435, SCAM645, and SCM415 steel bars were tested to find optimum conditions of friction welding. Auantitative equations which exhibit the relations of tensile strength, elongation, reduction of area and energy absorption with friction heating time were obtained by the experiment. Acoustic emission was also performed in the friction weldig process, and the real-time evaluation was enabled to find the optimum range of weld strength. Finally, the strength and toughness of welded joints were interpreted by the sem analysis of tensile fracture surfaces.

  • PDF

Estimation of Fatigue Strength in Resistance Spot Weldment of the Vehicle Body (차체 저항 점 용접부 피로수명 예측)

  • 손광재;양영수;조성규;장상균
    • Journal of Welding and Joining
    • /
    • v.20 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • When the vehicle travels in an actual road, resistance spot weldments of the vehicle structure are exposed to complex loading state. Since the fatigue strength in resistance spot weldment of vehicle body can be determined by effect of residual stresses and loading state of driving, estimating actual loading state and considering residual stress effect are needed. In this study, Fatigue stress-fatigue life relation concerned residual stress effect was obtained by thermo elastic plastic finite element analysis. And applied loading in resistance spot weldments of vehicle body was calculated by dynamic analysis. Presumption of fatigue life was performed using proposed method