• Title/Summary/Keyword: Join Sequence Separability

Search Result 1, Processing Time 0.014 seconds

Conjunctive Boolean Query Optimization based on Join Sequence Separability in Information Retrieval Systems (정보검색시스템에서 조인 시퀀스 분리성 기반 논리곱 불리언 질의 최적화)

  • 박병권;한욱신;황규영
    • Journal of KIISE:Databases
    • /
    • v.31 no.4
    • /
    • pp.395-408
    • /
    • 2004
  • A conjunctive Boolean text query refers to a query that searches for tort documents containing all of the specified keywords, and is the most frequently used query form in information retrieval systems. Typically, the query specifies a long list of keywords for better precision, and in this case, the order of keyword processing has a significant impact on the query speed. Currently known approaches to this ordering are based on heuristics and, therefore, cannot guarantee an optimal ordering. We can use a systematic approach by leveraging a database query processing algorithm like the dynamic programming, but it is not suitable for a text query with a typically long list of keywords because of the algorithm's exponential run-time (Ο(n2$^{n-1}$)) for n keywords. Considering these problems, we propose a new approach based on a property called the join sequence separability. This property states that the optimal join sequence is separable into two subsequences of different join methods under a certain condition on the joined relations, and this property enables us to find a globally optimal join sequence in Ο(n2$^{n-1}$). In this paper we describe the property formally, present an optimization algorithm based on the property, prove that the algorithm finds an optimal join sequence, and validate our approach through simulation using an analytic cost model. Comparison with the heuristic text query optimization approaches shows a maximum of 100 times faster query processing, and comparison with the dynamic programming approach shows exponentially faster query optimization (e.g., 600 times for a 10-keyword query).