• Title/Summary/Keyword: Jiangsu, China

Search Result 150, Processing Time 0.028 seconds

Pristimerin Inhibits Breast Cancer Cell Migration by Up-regulating Regulator of G Protein Signaling 4 Expression

  • Mu, Xian-Min;Shi, Wei;Sun, Li-Xin;Li, Han;Wang, Yu-Rong;Jiang, Zhen-Zhou;Zhang, Lu-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1097-1104
    • /
    • 2012
  • Background/Aim: Pristimerin isolated from Celastrus and Maytenus spp can inhibit proteasome activity. However, whether pristimerin can modulate cancer metastasis is unknown. Methods: The impacts of pristimerin on the purified and intracellular chymotrypsin proteasomal activity, the levels of regulator of G protein signaling 4 (RGS 4) expression and breast cancer cell lamellipodia formation, and the migration and invasion were determined by enzymatic, Western blot, immunofluorescent, and transwell assays, respectively. Results: We found that pristimerin inhibited human chymotrypsin proteasomal activity in MDA-MB-231 cells in a dose-dependent manner. Pristimerin also inhibited breast cancer cell lamellipodia formation, migration, and invasion in vitro by up-regulating RGS4 expression. Thus, knockdown of RGS4 attenuated pristimerin-mediated inhibition of breast cancer cell migration and invasion. Furthermore, pristimerin inhibited growth and invasion of implanted breast tumors in mice. Conclusion: Pristmerin inhibits proteasomal activity and increases the levels of RGS4, inhibiting the migration and invasion of breast cancer cells.

Ginsenoside Rb1 and compound K improve insulin signaling and inhibit ER stress-associated NLRP3 inflammasome activation in adipose tissue

  • Chen, Weijie;Wang, Junlian;Luo, Yong;Wang, Tao;Li, Xiaochun;Li, Aiyun;Li, Jia;Liu, Kang;Liu, Baolin
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.351-358
    • /
    • 2016
  • Background: This study was designed to investigate whether ginsenoside Rb1 (Rb1) and compound K (CK) ameliorated insulin resistance by suppressing endoplasmic reticulum (ER) stress-induced inflammation in adipose tissue. Methods: To induce ER stress, epididymal adipose tissue from mice or differentiated 3T3 adipocytes were exposed to high glucose. The effects of Rb1 and CK on reactive oxygen species production, ER stress, TXNIP/NLRP3 inflammasome activation, inflammation, insulin signaling activation, and glucose uptake were detected by western blot, emzyme-linked immunosorbent assay, or fluorometry. Results: Rb1 and CK suppressed ER stress by dephosphorylation of $IRE1{\alpha}$ and PERK, thereby reducing TXNIP-associated NLRP3 inflammasome activation in adipose tissue. As a result, Rb1 and CK inhibited IL-$1{\beta}$ maturation and downstream inflammatory factor IL-6 secretion. Inflammatory molecules induced insulin resistance by upregulating phosphorylation of insulin receptor substrate-1 at serine residues and impairing insulin PI3K/Akt signaling, leading to decreased glucose uptake by adipocytes. Rb1 and CK reversed these changes by inhibiting ER stress-induced inflammation and ameliorating insulin resistance, thereby improving the insulin IRS-1/PI3K/Akt-signaling pathway in adipose tissue. Conclusion: Rb1 and CK inhibited inflammation and improved insulin signaling in adipose tissue by suppressing ER stress-associated NLRP3 inflammation activation. These findings offered novel insight into the mechanism by which Rb1 and CK ameliorate insulin resistance in adipose tissue.

Cardioprotective effect of ginsenoside Rb1 via regulating metabolomics profiling and AMP-activated protein kinase-dependent mitophagy

  • Hu, Jingui;Zhang, Ling;Fu, Fei;Lai, Qiong;Zhang, Lu;Liu, Tao;Yu, Boyang;Kou, Junping;Li, Fang
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.255-265
    • /
    • 2022
  • Background: Ginsenoside Rb1, a bioactive component isolated from the Panax ginseng, acts as a remedy to prevent myocardial injury. However, it is obscure whether the cardioprotective functions of Rb1 are related to the regulation of endogenous metabolites, and its potential molecular mechanism still needs further clarification, especially from a comprehensive metabolomics profiling perspective. Methods: The mice model of acute myocardial ischemia (AMI) and oxygen glucose deprivation (OGD)-induced cardiomyocytes injury were applied to explore the protective effect and mechanism of Rb1. Meanwhile, the comprehensive metabolomics profiling was conducted by high-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (HPLC-Q/TOF-MS) and a tandem liquid chromatography and mass spectrometry (LC-MS). Results: Rb1 treatment profoundly reduced the infarct size and attenuated myocardial injury. The metabolic network map of 65 differential endogenous metabolites was constructed and provided a new inspiration for the treatment of AMI by Rb1, which was mainly associated with mitophagy. In vivo and in vitro experiments, Rb1 was found to improve mitochondrial morphology, mitochondrial function and promote mitophagy. Interestingly, the mitophagy inhibitor partly attenuated the cardioprotective effect of Rb1. Additionally, Rb1 markedly facilitated the phosphorylation of AMP-activated protein kinase α (AMPKα), and AMPK inhibition partially weakened the role of Rb1 in promoting mitophagy. Conclusions: Ginsenoside Rb1 protects acute myocardial ischemia injury through promoting mitophagy via AMPKα phosphorylation, which might lay the foundation for the further application of Rb1 in cardiovascular diseases.

Mechanical properties of new stainless steel-aluminum alloy composite joint in tower structures

  • Yingying Zhang;Qiu Yu;Wei Song;Junhao Xu;Yushuai Zhao;Baorui Sun
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.517-532
    • /
    • 2023
  • Tower structures have been widely used in communication and transmission engineering. The failure of joints is the leading cause of structure failure, which make it play a crucial role in tower structure engineering. In this study, the aluminum alloy three tube tower structure is taken as the prototype, and the middle joint of the tower was selected as the research object. Three different stainless steel-aluminum alloy composite joints (SACJs), denoted by TA, TB and TC, were designed. Finite element (FE) modeling analysis was used to compare and determine the TC joint as the best solution. Detail requirements of fasteners in the TC stainless steel-aluminum alloy composite joint (TC-SACJ) were designed and verified. In order to systematically and comprehensively study the mechanical properties of TC-SACJ under multi-directional loading conditions, the full-scale experiments and FE simulation models were all performed for mechanical response analysis. The failure modes, load-carrying capacities, and axial load versus displacement/stain testing curves of all full-scale specimens under tension/compression loading conditions were obtained. The results show that the maximum vertical displacement of aluminum alloy tube is 26.9mm, and the maximum lateral displacement of TC-SACJs is 1.0 mm. In general, the TC-SACJs are in an elastic state under the design load, which meet the design requirements and has a good safety reserve. This work can provide references for the design and engineering application of aluminum alloy tower structures.

Abortions and Breast Cancer Risk in Premenopausal and Postmenopausal Women in Jiangsu Province of China

  • Jiang, Ai-Ren;Gao, Chang-Ming;Ding, Jian-Hua;Li, Su-Ping;Liu, Yan-Ting;Cao, Hai-Xia;Wu, Jian-Zhong;Tang, Jin-Hai;Qian, Yun;Tajima, Kazuo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.33-35
    • /
    • 2012
  • To evaluate the relationship between abortions and risk of breast cancer, we conducted a case-control study with 669 cases and 682 population-based controls in Jiangsu Province of China. A structured questionnaire was used to elicit detailed information. Unconditional logistic regression analysis was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs). The results have revealed that induced abortion was related to increased risk of breast caner. Premenopausal women who had ${\geq}3$ times of induced abortion were at increased crude OR (2.41, 95%CI: 1.09-5.42) and adjusted-OR (1.55, 95%CI: 1.15-5.68). Postmenopausal women with a previous induced abortion were at increased crude OR (2.04, 95%CI: 1.48-2.81) and adjusted-OR (1.82, 95%CI: 1.30-2.54), and there was a significant increase trend in OR with number of induced abortions (p for trend: 0.0001). Overall, spontaneous abortion did not significantly alter the risk of breast cancer, but postmenopausal women who had history of spontaneous abortion were at increased OR. These results suggested that relationship between breast cancer and abortions may depend on menopausal status and induced abortion may played an important role in the development of breast cancer in Jiangsu' women of China.

Effects of a Compound Extract from Agrimonia pilosa Ledeb, Grifola umbellata (pers.) Pilat, and Gambogia on Human Gastric Carcinoma MGC-803 Cells

  • Zhao, Li;Zhang, Xiao-Nan;Gu, Hong-Yan;Wang, Jia;Tao, Lei;Mu, Rong;Guo, Qing-Long
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.103-107
    • /
    • 2009
  • Three traditional Chinese medicines, Agrimonia pilosa Ledeb, Grifola umbellata (pers.) Pilat, and Gambogia, are combined to form a compound extract, AGC. In this study, the in vitro and in vivo inhibitory effects of AGC on human gastric carcinoma MGC-803 cells were demonstrated, and the molecular mechanisms underlying these effects are investigated. Our results indicate that AGC inhibited MGC-803 cell growth in a dose-dependent manner as measured by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, with an $IC_{50}$ of about $6.045{\pm}0.69{\mu}g/mL$. In vivo, AGC inhibited growth of human gastric carcinoma in xenograft tumors in nude mice, and the inhibitory rate reached 55.2% at 300 mg/kg. The pro-apoptotic activity of AGC was attributed to its ability to decrease the expression of Bcl-2 and Pro-caspase3 and increase the expression of Bax. These results demonstrate that AGC can effectively induce programmed cell death and may be a promising anti-tumor drug in human gastric carcinoma.

Incidence and Mortality of Female Breast Cancer in Jiangsu, China

  • Wu, Li-Zhu;Han, Ren-Qiang;Zhou, Jin-Yi;Yang, Jie;Dong, Mei-Hua;Qian, Yun;Wu, Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2727-2732
    • /
    • 2014
  • Objectives: The aim of this study was to describe and analyze the incidence and mortality of female breast cancer in Jiangsu Province of China. Methods: Incidence and mortality data for female breast cancer and corresponding population statistics from eligible cancer registries in Jiangsu from 2006 to 2010 were collected and analyzed. Crude rates, age-specific rates and age-standardized rates of incidence and mortality were calculated, and annual present changes (APCs) were estimated to describe the time trends. Results: From 2006 to 2010, 11,013 new cases and 3,068 deaths of female breast cancer were identified in selected cancer registry areas of Jiangsu. The annual average crude incidence and age-standardized incidence by world population (ASW) were 25.2/ and 17.9/100,000 respectively. The annual average crude and ASW for mortality rates were 7.03/ and 4.81/100,000. The incidence was higher in urban areas than that in rural areas, and this was consistent in all age groups. No significant difference was observed in mortality between urban and rural areas. Two peaks were observed when looking at age-specific rates, one at 50-59 years and another at over 85 years. During the 5 years, incidence and mortality increased with APCs of 4.47% and 6.89%, respectively. Compared to the national level, Jiangsu is an area with relatively low risk of female breast cancer. Conclusion: Breast cancer has become a main public health problem among Chinese females. More prevention and control activities should be conducted to reduce the burden of this disease, even in relatively low risk areas like Jiangsu.

Numerical study on tensioned membrane structures under impact load

  • Zhang, Yingying;Zhao, Yushuai;Zhang, Mingyue;Zhou, Yi;Zhang, Qilin
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.109-118
    • /
    • 2019
  • This paper presents the numerical simulation of membrane structure under impact load. Firstly, the numerical simulation model is validated by comparing with the test in Hao's research. Then, the effects of the shape of the projectile, the membrane prestress and the initial impact speed, are investigated for studying the dynamic response and failure mechanism, based on the membrane displacement, projectile acceleration and kinetic energy. Finally, the results show that the initial speed and the punch shape are related with the loss of kinetic energy of projectiles. Meanwhile, the membrane prestress is an important factor that affects the energy dissipation capacity and the impact resistance of membrane structures.