• Title/Summary/Keyword: Jet-like flow

Search Result 63, Processing Time 0.026 seconds

Axisymmetric analysis of blood flow for a floating type polymer artificial heart valve (부유식 폴리머 인공심장 밸브의 축대칭 혈류 해석)

  • Seong H. C.;Jung K. S.;Kim K. H.;Ko H. J.;Park C. Y.;Min B. G.;Shim E. B.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.703-704
    • /
    • 2002
  • The two major problems related to the blood flow in a floating type polymer valve are thrombus formation and hemolysis. It is well known that the shear stress in the fluid and flow separation around the valve are blamed for such disastrous phenomena. In this viewpoint, through study of the flow field around the valve is imperative to improve design of the valve. The aim of this study is to investigate the fluid flow around a floating type polymer valve. The numerical method employed in this study is the finite element software called ADINA. Incompressible viscous flow is assumed for blood using the assumption of Newtonian fluid. In this study, two prominent features of the axisymmetric flow around the floating type polymer valve are observed: jet-like flows observed near the gap between the conduit and the valve, and recirculating flow downstream of the valve. We also provided a detailed description of shear stress field according to the variation of flow conditions. The shear stress in fluid has its maximum value near the gap between the valve and the conduit.

  • PDF

Experimental Study for the Prevention of Cavitation Damage in the Diesel Fuel Injection Pumps (디젤엔진 연료분사펌프 캐비테이션 손상 방지를 위한 실험적 연구)

  • Kim, Dong-Hun;Park, Tae-Hyung;Heo, Jeong-Yun;Ryu, Seung-Hyup;Kang, Sang-Lip
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.61-61
    • /
    • 2011
  • Cavitation phenomena during the injection process of the conventional fuel injection pump for a medium-speed diesel engine can cause surface damage with material removal or round-off on the plunger and barrel port and may shorten their expected life time. An experiment of flow visualization was carried out to investigate the main cause of these cavitation damages and find the prevention method. Experimental results of flow visualization show that these damages are mainly affected by fountain-like cavitation and jet-type cavitation generated before and after the end of fuel delivery process and therefore the prevention method was designed to control these cavitation flows. From the visualization and endurance test, it was proved that this method can effectively prevent cavitation damages by controlling cavitation flows.

  • PDF

A Study of Flow Characteristics by Acoustic Excitation on the Laminar Non-premixed Jet Flame (층류 비예혼합 분류화염에서 음향가진에 의한 유동특성 연구)

  • Oh, Kwang-Chul;Lee, Kee-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.160-168
    • /
    • 2010
  • An experimental study has been conducted to investigate the effects of forcing amplitude on the tone-excited non-premixed jet flame of the resonance frequency. Visualization techniques are employed using the laser optic systems, which are RMS tomography, PLIF and PIV system. There are three lift-off histories according to the fuel flow rates and forcing amplitudes; the regime I always has the flame base feature like turbulent flame when the flame lift-off, while the flame easily lift-off in the regime II even if a slight forcing amplitude applied. The other is a transient regime and occurs between the regime I and regime II, which has the flame base like the bunsen flame of partial premixed flame. In the regime I and II, the characteristics of the mixing and velocity profile according to the forcing phase were investigated by the acetone PLIF, PIV system. Particular understanding is focused on the distinction of lift-off history in the regime I and II.

Flow Actuation by DC Surface Discharge Plasma Actuator in Different Discharge Modes

  • Kim, Yeon-Sung;Shin, Jichul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.339-346
    • /
    • 2015
  • Aerodynamic flow control phenomena were investigated with a low-current DC surface discharge plasma actuator. The plasma actuator was found to operate in three different discharge modes with similar discharge currents of about 1 mA or less. Stable continuous DC discharge without audible noise was obtained at higher ballast resistances and lower discharge currents. However, even with continuous DC power input, a low-frequency self-pulsed discharge was obtained at lower ballast resistances, and a high-frequency self-pulsed discharge was obtained at higher set-point currents and higher ballast resistances, both with audible noise. The Schlieren image reveals that the low-frequency self-pulsed mode produces a synthetic jet-like flow implying that a gas heating effect plays a role, even though the discharge current is small. The high-frequency self-pulsed mode produces pulsed jets in a tangent direction, and the continuous DC mode produces a steady straight pressure wave. Particle image velocimetry (PIV) images reveal that the induced flow field by the low-frequency self-pulsed mode has flow propagating in the radial direction and centered between the electrodes. The high-frequency self-pulsed mode and continuous DC mode produce flow from the anode to the cathode. The perturbed region downstream of the cathode is larger in the high-frequency self-pulsed mode with similar maximum speeds.

Experimental Study on Application of Paste-like Grouting Material to Void (공동부 충전재로써 페이스트형 유동화토의 환경 안정성 평가에 관한 실험적 연구)

  • Kim, Jin-Chun;Kang, Hee-Jin;Lim, Yu-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1063-1068
    • /
    • 2008
  • When construction of high pressure jet-grouting is to be performed, it has been reported that applied cement slurry which hasn't got dried out can cause severe environmental pollution, and can flow into near streams and fish farms. Several laboratory tests were performed in this study in order to verify safety of paste-like grouting material that was developed newly to be applied to void in the ground. According to experimental test results, it is proved to be so safe that application of the newly developed flowable grouting material can prevent the materials from spilling into surrounding areas and is not harmful to fishes.

  • PDF

A Proposal for Diesel Spray Model Using a TAB Breakup Model and Discrete Vortex Method

  • Yeom, Jeong-Kuk;Lee, Myung-Jun;Chung, Sung-Sik;Ha, Jong-Yul;Jiro Senda;Hajime Fujimoto
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.532-548
    • /
    • 2002
  • A hybrid model consisting of a modified TAB (Taylor Analogy Breakup) model and DVM (Discrete Vortex Method) is proposed for numerical analysis of the evaporating spray phenomena in diesel engines. The simulation process of the hybrid model is divided into three steps. First, the droplet breakup of injected fuel is analyzed by using the modified TAB model. Second, spray evaporation is calculated based on the theory of Siebers'liquid length. The liquid length analysis of injected fuel is used to integrate the modified TAB model and DVM. Lastly, both ambient gas flow and inner vortex flow of injected fuel are analyzed by using DVM. An experiment with an evaporative free spray at the early stage of its injection was conducted under in-cylinder like conditions to examine an accuracy of the present hybrid model. The calculated results of the gas jet flow by DVM agree well with the experimental results. The calculated and experimental results all confirm that the ambient gas flow dominates the downstream diesel spray flow.

An Experimental Study on Circulating Flow Around a Submerged Horizontal Plate (잠재 평판 주변에서 발생하는 순환류에 대한 실험적 연구)

  • 이정렬;한상우
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.109-121
    • /
    • 2001
  • This paper describes results of an experimental study to examine the effect of a submerged horizontal breakwater to sea water exchange. Flow measurements were taken by using a PIV(Particie Image Velocimetry) system, and mean currents and wave ellipses extracted through the harmonic analysis are presented. As results, the rates of circulating flow were closely connected with the volume flux of incident waves and the counter-rotating vortex pair was observed at the onshore side of a plate. The dye study showed that incoming sea water and polluted water body mixed up significantly due to turbulent motions induced by a jet-like flow.

  • PDF

Oxygen Transfer Characteristics & Pure Oxygen Application Study on Circulation Flow Rate of the JLB (Jet Loop Bioreactor) (Jet 폭기 시스템의 순환유량에 따른 산소전달 특성 및 순산소 적용성 검토)

  • Park, Noh-Back;Song, Yong-Hyo;Pack, June-Gue;Jun, Hang-Bae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.896-901
    • /
    • 2009
  • In this study, in order to apply the air and pure oxygen in the Jet Loop Reactor (JLB) in which the oxygen transfer rate is high, differentiate the operation mode according to each air flowrate and liquid flowrate and investigate the oxygen transfer characteristic, an experiment was carried out. The oxygen concentration with the air flowrate ($Q_g$) and liquid flowrate ($Q_L$) was identical but the oxygen transfer coefficient ($K_L{\cdot}a$) is linear depending on degree of two factors. The width of an increase is small in $0.1min^{-1}$ when the air flowrate is 0.2 L/min with increasing the liquid flowrate. Whereas, the increment was exposed to be very high for $1.5min^{-1}$ when the air flowrate was 5 L/min. In the experiments using the pure oxygen, it was 30 mg/L of oxygen concentration finally and it was 3.5 times than using the air. But the time reached the saturated concentration was similar to using the air, and $K_L{\cdot}a$ was similar to using the air too. Analysis between two independent variable and oxygen transfer of the correlation is the same model like $K_L{\cdot}a={0.0161Q_L}^{1.5371}{Q_g}^{0.5433}$ using with coefficient non linear regression analysis. It was resulted that the liquid flowrate were approximately three times than air flowrate on effect to oxygen transfer rate.

Stokesian Dynamic Simulation of Pigment Flow in Ink Jet Printer Nozzle (잉크제트 프린터를 이용한 섬유인쇄 시 노즐 관에서의 입자 흐름)

  • Kim, Young Dae;Lee, Moo Sung;Choi, Chang Nam;Lee, Ki Young
    • Clean Technology
    • /
    • v.7 no.3
    • /
    • pp.169-178
    • /
    • 2001
  • Textile printing prints around twenty bilion linear meters of textile each year. Rotary and flat bed screen printing requires pre and post treatments, leading to the loss of dyes and the environmental problems due to effluents. Digital ink jet printing can offer a solution to the existing problems, especially the environmental problems, in addition to its flexibility. Pigments are used as a dispersion inks in the digital inkjet textile printing. Molecular dynamic simulation like Stokesian dynamic simulation was employed to simulate the behavior of pigments and velocity distribution under the pressure driven flow in the printer nozzle. The simulation shows that the particle distribution in the flow are uniform if particle volume fraction is low, the ratio of nozzle and particle diameter is large, and the dimensionless average suspension velocity is low.

  • PDF

Effects of Flow Excitation on the Nitrogen Oxide Emission of a Non-Premixed Flame (유동장 자극이 화염의 질소산화물 배출에 미치는 영향)

  • 이기만
    • Fire Science and Engineering
    • /
    • v.18 no.2
    • /
    • pp.34-40
    • /
    • 2004
  • The effects of external flow excitation with various frequencies and amplitudes on the flame behavior and pollution emission characteristics from a laminar jet flame are experimentally investigated. Measurements of $NO_x$ emission indices ($EINO_x$), performed in vertical lifted flame like turbulent with various exciting amplitude at a constant resonance frequency, have been conducted. It was also conducted to investigate the effects of excited frequency at a constant exciting amplitude on $NO_x$ emissions with a various frequency ranged 0 Hz to 2 KHz. From the vertical lifted turbulent flame of the excited jet with resonance frequency by strong excitation was shown that the dependence of $NO_x$ emission could be categorized into three groups Group I of long flame length with high disturbances yielding high $NO_x$ emission, Group II of intermediate flame length and relative narrow flame volume with low disturbance yielding low $NO_x$ emission and Group III of long flame length and large flame volume with high time & space disturbances behaviour yielding high $NO_x$ emission.