• Title/Summary/Keyword: Jet fan

Search Result 106, Processing Time 0.031 seconds

Partial turbulence simulation and aerodynamic pressures validation for an open-jet testing facility

  • Fu, Tuan-Chun;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Baheru, Thomas
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.15-33
    • /
    • 2014
  • This paper describes partial turbulence simulation and validation of the aerodynamic pressures on building models for an open-jet small-scale 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. The wind characteristics pertained to the Atmospheric Boundary Layer (ABL) mean wind speed profile and turbulent fluctuations simulated in the facility. Both in the wind tunnel and the small-scale 12-Fan WOW these wind characteristics were produced by using spires and roughness elements. It is emphasized in the paper that proper spectral density parameterization is required to simulate turbulent fluctuations correctly. Partial turbulence considering only high frequency part of the turbulent fluctuations spectrum was simulated in the small-scale 12-Fan WOW. For the validation of aerodynamic pressures a series of tests were conducted in both wind tunnel and the small-scale 12-fan WOW facilities on low-rise buildings including two gable roof and two hip roof buildings with two different slopes. Testing was performed to investigate the mean and peak pressure coefficients at various locations on the roofs including near the corners, edges, ridge and hip lines. The pressure coefficients comparisons showed that open-jet testing facility flows with partial simulations of ABL spectrum are capable of inducing pressures on low-rise buildings that reasonably agree with their boundary-layer wind tunnel counterparts.

Three Dimensional Supersonic Jet Flow Analysis Impinging on Flame Deflector Surface (화염유도로 주위의 3차원 초음속 제트 유동 해석)

  • Park, S.K.;Choi, B.K.;Yoon, K.T.;Woo, Y.C.;Lee, D.S.;Kang, S.I.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.494-498
    • /
    • 2001
  • When supersonic jet impinges on wall from the nozzle, complex flow pattern appears such as Mach disc, expansion fan, and jet boundary. The numerical computation of this supersonic jet is important on flame deflecctor design for launch space especially. In this paper, we analyzed supersonic jet structure impinging on deflector wall using three dimensional steady and unsteady compressible equation and showed temperature and pressure distribution on the wall surface. As a result, some dominant factors of jet flows are discussed for conceptual design of flame deflector.

  • PDF

Investigate on the rate of change of CO concentration in a tunnel under changed position of the jet fans by using numerical method (제트 팬 가동위치에 따른 장대터널 내 CO 농도 변화율에 대한 전산해석)

  • Min, Jae-Hong;Kim, Dae-Hyun;Chung, Jin-Taek
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2765-2770
    • /
    • 2008
  • The purpose of tunnel ventilation system for long road tunnels is to keep certain levels of Visibility Index and the concentration of CO. Additional equipments such as jet fans are used in road tunnel to discharge pollutants in the road tunnel. The control algorism of tunnel ventilation system takes the value of sensors as input, and then gives the operation method of jet fans in tunnel as output. Information on the variation of CO concentration in tunnel when jet fans are running is needed to minimize their operation time. Numerical analysis is used in this paper because of the difficulty of conducting experiments under standard condition for ventilation of road tunnel. The concentration of CO has been calculated by using 3-dimensional CFD under transient condition with speed of cars, quantity of air ventilation, and the results for various operation position of jet fans are compared.

  • PDF

Numerical Simulation of Axisymmetric Supersonic let Impingement on a Flat Plate (수직평판에 충돌하는 축대칭 초음속 제트의 수치 연구)

  • 신완순;이택상;박종호;김윤곤;심우건
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.11-18
    • /
    • 2000
  • When supersonic underexpanded jets are exhausted from the nozzle, complex shock cell configurations such as barrel shock, expansion fan, Mach disc, and exhaust-gas jet boundary are appeared repetitively. The shock cell is smeared by turbulence dissipation and disappeared in long distance from the nozzle. When underexpanded jet is suddenly impinged on a flat plate, it forms very complex flow structure. In this paper, we solve compressible Wavier-Stokes equation adapting finite volume method to obtain jet impingement flow structure and compare calculated data with experimental ones. It is shown that numerical simulation data are in good agreement with experimental one in a short distance between nozzle exit and flat plate and little influence of underexpanded ratio is appeared in jet impingement now distribution.

  • PDF

A fundamental study on the jet fan capacity for smoke control considering thermal buoyancy force in tunnel fires (터널 화재 시 열부력을 고려한 제연용 제트팬 용량산정에 관한 기초 연구)

  • Lee, Ho-Hyung;Choi, Pan-Gyu;Jo, Jong-Bok;Lee, Seung-Chul;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.501-511
    • /
    • 2018
  • As a result of the recent revision of the 'Guideline for Installation and Management of Fire Prevention Facility in Road Tunnels', the thermal buoyancy has to be taken into account when calculating the capacity of jet fans for smoke control in tunnel fires. However, there is no detailed methodologies for considering thermal buoyancy, so further study is needed. In this study, the thermal buoyancy in the tunnel is calculated by 3-D numerical simulation to consider the thermal buoyancy in case of fire in tunnels, and the relationship between heat buoyancy and vehicle drag, And the method of calculating the capacity of the jet fan for smoke control in tunnels. According to the analysis results, heat buoyancy acts as a resistance force in the case of a down-slope tunnel, and the pressure rise of jet fan for smoke control is not simply determined by the value of heat buoyancy at the entrance of the tunnel and the value of the vehicle drag at the exit. And it is analyzed that it is necessary to carry out a comprehensive review according to the location of the fire vehicle in tunnels.

Experimental Facility for Measuring the Cooling Performance of a Piezoelectric Fan (피에조 팬 냉각 성능 측정을 위한 실험장치 구축)

  • Oh, Myong Hun;Park, Soo Hyun;Ko, Jae Ik;Choi, Minsuk
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.52-58
    • /
    • 2018
  • In this study, an experimental facility has been built to measure the cooling performance of a piezoelectric fan. The facility is composed of a heat source made of $50{\mu}m$ Ni-Cr foil, a piezoelectric fan and a rotary fan for cooling the heat source. For two cases where the foil is vertical or horizontal, the surface temperature on the foil has been measured by an IR camera with and without cooling and the cooling performance of both fans has been analyzed. With cooling by both fans, the rotary fan lowers the surface temperature of the foil as a whole, while the piezoelectric fan lowers the surface temperature at the center of the foil locally. It is also found that the cooling effectiveness of the piezoelectric fan is higher on the horizontal foil than on the vertical foil because the natural convection interferes with the jet from the piezoelectric fan.

Preliminary Throughflow Analysis of a Lift Fan in a Core Separated Turbofan Engine System

  • Shiratori, Toshimasa;Nakajima, Masahiro;Saito, Yoshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.491-498
    • /
    • 2004
  • Lift Fan Engines of JAXA's conceptual Jet VTOL aircraft have a very small bellmouse shape air intake, which make some differences in aerodynamic design of the blades. To obtain a better rotor or stator blade design, this paper performs a numerical analysis of the throughflow on a lift fan as a two-dimensional axisymmetrical flow. Based on the last report focusing on the air intake's influence on the throughflow, a more realistic bellmouse air intake case is treated to reconsider the influence on the throughflow by the small bellmouse air intake. Three work input patterns are tested to reduce some problematic influences on the throughflow or blade designs. The obtained result shows one of acceptable blade designs for the lift fan engine.

  • PDF

A Study on an Optimal Design of Jet Fan Location Considering the Voltage Drops in Tunnels (전압강하를 고려한 터널내 환기 및 방재팬의 경제적 위치선정에 대한 연구)

  • Kim, Eun-Soo;Kim, Hyo-Gyu;Song, Jung-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.105-109
    • /
    • 2004
  • 우리나라 지형의 특성은 약 70%가 산으로 이루어져 있다. 이러한 지형적 여건은 교통과 관련된 사회간접 자본의 증가로 이어지며, 최근에는 산업의 발전에 힘입어 교통량의 증가와 물류비용의 절감을 목적으로 철도 및 도로의 건설시 터널의 계획 및 시공이 증가되고 있는 추세이다. 이에 따라 터널의 환경개선과 화재시 제연을 목적으로 설치되는 제트팬(Jet Fan)의 용량이 차지하는 전기적 비중이 높아지고, 전압강하에 대한 손실율이 증가되고 있다. 따라서 제트팬의 설치시 배치방법과 터널의 길이에 따른 전기실 배치를 Case 별로 분류하여 전압강하를 계산하고 분석하여 가장 효율적이며 경제적인 방안을 연구하고 정리하여 향후 설계시 기초자료를 제공하고자 하였다.

  • PDF

A Numerical Study on Effective Smoke-Control System of a Rescue Station in a Tunnel Fire (터널내 열차 화재시 효과적인 구난역 제연 설비를 위한 수치 해석 연구)

  • Yang, Sung-Jin;Won, Chan-Shik;Hur, Nahm-Keon;Cha, Chul-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.575-578
    • /
    • 2006
  • In designing smoke-control system of rescue station in train tunnel, a purpose is to prevent a disaster by proposing the jet fan operation together with smoke-control curtain in tunnel fire. This study has investigated the relationship of the Heat Release Rate(HRR) and a adequate ventilation velocity to control the fire propagation in tunnel fire, and has improved the effect of the smoke-control curtain on preventing the flow of pollutants. In this study, Computational Fluid Dynamics(CFD) simulations with ST AR-CD(ver 3.24) were carried out on predicting the fire spreading and the flow of pollutants, considering jet fan operations and effect of smoke-control curtain. Our simulation domain is the full scale model of the 'DAEGWALLYEONG' 1st tunnel. The results represent that ventilation operation can control the fire spreading and pollutants effectively to prevent a disaster.

  • PDF

A Cascade Control Algorithm for the CO Level Control of a Long Road Tunnel (터널 일산화탄소 농도 제어를 위한 직렬 제어 알고리즘)

  • Han Do Young;Yoon Jin Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.147-155
    • /
    • 2005
  • For a long road tunnel, a tunnel ventilation system may be used in order to reduce the pollution level below the required level. To control the tunnel pollution level, a closed loop control algorithm may be used. The cascade control algorithm, which composed of a jet fan control algorithm and an air velocity setpoint algorithm, was developed to regulate the CO level in a tunnel. The verification of control algorithms was carried out by dynamic models developed from real tunnel data sets. The simulation results showed that control algorithms developed for this study were effective to control the tunnel ventilation system.