• Title/Summary/Keyword: Jet Reynolds number

Search Result 267, Processing Time 0.027 seconds

The Flow Characteristics with Variation of Nozzle-to-nozzle Angles on Unventilated Dual Jests (이중제트에서 노즐과 노즐사이의 각도 변화에 따른 유동 특성)

  • Kim, Dong-Keon;Kim, Moon-Kyoung;Yoon, Soon-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1231-1239
    • /
    • 2008
  • The characteristics of flow on unventilated dual jets was experimentally investigated. The two nozzles each with an aspect ratio of 20 were separated by 6 nozzle widths. Reynolds number based on nozzle width was set to 5,000 by nozzle exit velocity. All measurements were made over a range of nozzle-to-nozzle angles from $0^{\circ}$ to $25^{\circ}$. The particle image velocimetry and pressure transducer were employed to measure turbulent velocity components and mean static pressure, respectively. It was shown that a recirculation zone with sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plated. As nozzle-to-nozzle inclined angles were decreased, it was found that the spanwise turbulent intensity is greater than the streamwise turbulent intensity in the merging region. In the combined region, the velocity of dual jets agree well with that of single jet, but the turbulence intensity of dual jets not agree with that of single jet.

A Numerical Study on Beat Transfer from an Aluminum Foam Heat Sink by Impinging Air Jet in a Confined Channel (충돌 공기제트에서 국한 유로 내 발포 알루미늄 방열기의 열전달 수치해석)

  • Lee, Sang-Tae;Kim, Seo-Young;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.883-892
    • /
    • 2002
  • A numerical study has been carried out to investigate the flow and heat transfer from an aluminum foam heat sink in a confined channel. A uniform heat flux is given at the bottom of the aluminum foam heat sink, which is horizontally placed on the heated surface. The channel walls are assumed to be adiabatic. Cold air is supplied from the top opening of the channel and exhausted to the channel outlet. Comprehensive numerical solutions are acquired to the governing Wavier-Stokes and energy equations, using the Brinkman-Forchheimer extended Darcy model and the local thermal non-equilibrium model f3r the region of porous media. Details of flow and thermal fields are examined over wide ranges of the principal parameters; i.e., the Reynolds number Re, the height of heat sink h/H, porosity $\varepsilon$and pore diameter ratio $R_{H}$.

Heat/Mass Transfer for Impingement/Effusion Cooling System with Circular Guide (원형가이드 설치에 따른 충돌제트/유출냉각에서 열/물질전달 특성)

  • Hong, Sung-Kook;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1147-1154
    • /
    • 2006
  • An experimental investigation was conducted to enhance the heat/mass transfer for impingement/effusion cooling system when the initial crossflow was formed. For the improvement of heat transfer, the circular guide is installed on the injection hole. At the fixed jet Reynolds number of 10,000, the measurements were carried out for blowing ratios ranging from 0.5 to 1.5. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The result presents that the circular guide protects the injected jet from the initial crossflow, increasing the heat/mass transfer. The heat transfer of stagnation region is hardly changed regardless of the blowing ratio. The secondary peak is obviously formed by flow transition to turbulent flow. At high blowing ratio of 1.5, the circular guide produces $26{\sim}30%$ augmentation on the averaged heat/mass transfer while the case without circular guide leads to the low and non-uniform heat/mass transfer. With the increased heat/mass transfer, the installation of circular guide is accompanied by the increase of pressure loss in the channel. However, the pressure drop caused by the circular guide is lower than that for other cooling technique with the circular pin fin.

Effect of Crossflow on Heat (Mass) Transfer of an Impingement/Effusion Cooling System (충돌제트/유출냉각기법에서 횡방향유동이 열/물질전달에 미치는 영향)

  • Nam, Yong-Woo;Choi, Jong-Hyun;Cho, Hyung-Hee;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2219-2226
    • /
    • 2003
  • Two perforated plates are placed in parallel and staggered arrangements with a gap distance of 2 times of the hole diameter, and initial crossflow passes between the plates. Both the injection and effusion hole diameters are 10 mm, and the Reynolds number based on the hole diameter and hole-to-hole pitch are fixed to 10,000 and 6 times of the hole diameter, respectively. To investigate the effect of crossflow, the flow rate of crossflow is changed from 0.2 to 2 times of that of the impinging jet. A naphthalene sublimation method is used to determine the local heat/mass transfer coefficients on the upward facing surface of the effusion plate. With the initial crossflow, the heat/mass transfer rates on the effusion (target) plate decrease as the velocity of crossflow increases, since the crossflow induces the locally low transfer regions formed at the mid-way between the effusion holes. However, the impingement/effusion cooling with crossflow presents higher heat/mass transfer rates than the array jet impingement cooling with the same initial crossflow.

  • PDF

NUMERICAL ANALYSIS ON THE MIXING OF A PASSIVE SCALAR IN THE TURBULENT FLOW OF A SMALL COMBUSTOR BY USING LARGE EDDY SIMULATION (큰에디모사법을 이용한 소형 연소기의 난류 유동장 내 스칼라 혼합에 대한 수치해석)

  • Choi, H.S.;Park, T.S.;Suzuki, K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.67-74
    • /
    • 2006
  • The characteristics of turbulent flow and mixing in a small can type combustor are investigated by means of Large Eddy Simulation (LES). Attention is paid for a combustor having a baffle plate with oxidant injection and fuel injection holes and study is made for three cases of different baffle plate configurations. From the result, it is confirmed that mixing is promoted by interaction between the jets during their developing process and large vortical flows generated in the vicinity of the combustor wall or fuel jet front. This particular flow feature is effective to accelerate the slow mixing between fuel and oxidant suffering from low Reynolds number condition in such a small combustor. In particular, the vortical flow region ahead of fuel jet plays an important role for rapid mixing. Discussion is made for the time and space averaged turbulent flow and scalar quantities which show peculiar characteristics corresponding to different vortical flow structures for each baffle plate shapes.

Experimental Investigation of Two Parallel Plane Jets (두 개의 평행한 평면 제트의 실험적 연구)

  • Kim Dong-Keon;Yoon Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.214-223
    • /
    • 2005
  • The characteristics of flow on two parallel plane jets was experimentally investigated. The two nozzles each with an aspect ratio of 20 were separated by 6 nozzle widths. Reynolds number based on nozzle width was set to 5,000 by nozzle exit velocity. The particle image velocimetry and pressure transducer were employed to measure turbulent velocity components and mean static pressure, respectively. In case of unventilated parallel plane jets, it was shown that a recirculation zone with sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plated. There was no recirculation zone in the ventilated parallel plane jets. It was found that the spanwise turbulent intensities of unventilated jets were higher than those of ventilated jets because of the interaction of jets, and the streamwise turbulent intensities of ventilated jets were higher than those of unventilated jets because of the effect of entrainment.

Quantitative Visualization of Dissolved Oxygen Concentration Field in Micro Flows using PtOEP/PS Membrane (마이크로 유동에서 PtOEP/PS 박막을 이용한 용존 산소 농도장의 정량적 가시화)

  • Song, Dae-Hun;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • It is highly needed to measure the dissolved oxygen (DO) concentration field in water for a variety of purposes such as biological, industrial, environmental monitoring and medical application. Application of PSP (Pressure Sensitive Paint) which is sensitive to oxygen concentration has been carried out to measure DO concentration field using PtOEP/PS film and intensity based method under the UV-LEDs illumination. A micro round water jet having 100% of DO was obliquely impinged on to a PtOEP/PS film coated plate placed in a 0% of DO water container. DO concentration fields on the impinging plate were quantitatively visualized with a $2.94\;{\mu}m$ of spatial resolution. Through pixel-by-pixel calibration, uncertainty of each pixel by different sensitivity, different dye concentration and non-uniformity of illumination was removed. It is demonstrated that the high DO concentration region was coincided with the impingement area. The DO concentration gradient due to DO diffusion was affected by Reynolds number.

The Flow Characteristics of Parallel Plane Jets Using Particle Image Velocimetry Technique (I) - Unventilated Jet - (PIV기법을 이용한 병렬 평면제트의 유동특성 (I) - 유입이 제한된 제트 -)

  • Kim, Dong-Keon;Yoon, Soon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.3
    • /
    • pp.302-310
    • /
    • 2003
  • Experiments were conducted to show the characteristics of the flow on unventilated parallel plane jets. Measurements of mean velocity components and turbulent intensities were carried out with a particle image velocimetry to investigate the flow field generated by the air issued from two identical plane parallel nozzles and mixed with the ambient air. The measurements range of these experiments were Reynolds number of 5300 based on the nozzle width and the cases of nozzle-to-nozzle distance were four times. six times and eight times the width of the nozzle. Results show that a recirculation zone with a sub-atmospheric static pressure was bounded by the inner shear layers of the individual jets and the nozzles plate. The positions. where maximum value of mean turbulent intensities and mean turbulent kinetic energy show, were at the same position with the merging point. The spread of jets in the merging region increases more rapidly than that of Jets in the converging and the combined region. As nozzle-to-nozzle distances were increased. it was shown that merging and combined lengths were shorter.

Generation and Characterization of Homogeneous Isotropic Turbulence (균질한 등방향성 난류 생성 및 특성 변화 분석)

  • Lee, HoonSang;Han, KyuHo;Park, Han June;Jung, HyunKyun;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.21-29
    • /
    • 2018
  • Homogeneous and isotropic turbulence (HIT) with no mean flow is a very useful type of flow for basic turbulence research. However, it is difficult to generate HIT in the lab. In this study, we implemented HIT in a confined box through synthetic jet actuators using sub-woofer speakers. Characteristics of HIT are varied depending on the strength of the jets. We used 2D PIV to measure the velocity field. Turbulence statistics such as homogeneity, isotropy ratio, turbulence kinetic energy, dissipation rate, Taylor microscale, Kolmogorov scale, and velocity correlation coefficient were calculated. Most of the turbulence statistics increased exponentially according to the strength of the jets, and the Taylor Reynolds number reached up to 185.

An Experimental Study on Turbulent Diffusion Flame in Double Coaxial Air Jets(II) (동축이중 공기분류중의 난류확산화염에 관한 실험적 연구 II)

  • 조용대;최병윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1234-1243
    • /
    • 1990
  • Double coaxial are jets(annular and coaxial air jets) between which propane gas is fed was selected to study the structure of diffusion flames in turbulent shear flow. Schlieren and direct photographs are taken to visualize the flame structure. Mean and fluctuating temperatures and ion currents were measured to investigate the macroscopic and the instantaneous flame structure. The objective of this study is to understand the interaction between combustion and mixing process especially in the transition region of turbulent shear flow. The investigation reported in this paper focuses on the macroscopic and the instantaneous structures of three flames obtained. The increased mixing effect resulting from increase of Reynolds number of central air jet makes the flame bluish and short. When the velocity of surrounding air stream is higher than that of central air jet, the instantaneous flame structure is composed of coherent structure. It is considered that the flame structure of transitional region of mixing layer depends on the structure of mixing layer of non-reacting conditions.