• 제목/요약/키워드: Jet Impingment

검색결과 3건 처리시간 0.015초

제트충돌냉각되는 반원 오목면에서 열전달 및 유체유동에 관한 실험적 연구 (An Experimental Study on Heat Transfer and Fluid Flow on the Semi-Circular Concave Surface Cooled by Jet Impingement)

  • 유한성;양근영;이준식
    • 대한기계학회논문집B
    • /
    • 제20권9호
    • /
    • pp.2991-3006
    • /
    • 1996
  • An experimental study of jet flow and heat transfer has been carried out for the jet impingement cooling on a semi-circular concave surface. For the jet impingement on the concave surface, three different regions-free jet region, stagnation region, and wall jet flow region-exist, and the distributions of mean velocity and fluctuating velocity for each region have been measured by Laser Doppler Velocimeter. Of particular interests are the effects of jet Reynolds number, the distance between the nozzle exit and cooling surface apex, and the distance from the stagnation point in the circumferential direction. The resulting characteristics of heat transfer at the stagnation point and the variation of heat transfer along the circumferential direction including the existence of secondary peak have been explained in conjunction with measured impinge jet flow.

제한면을 가지는 이차원 층류 충돌젯의 수치적 연구 (A Numerical Study of Planar Laminar Impingement Jet with a Confinement Plate)

  • 강동진;오원태
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.414-423
    • /
    • 1994
  • The planar laminar impingement jet with a confinement plate has been studied numerically. Discretzing the convection term with the QUICKER scheme, the full Navier-Stokes equations for fluid flow were solved using the well known SIMPLER algorithm. The flow characteristics with Reynolds number and jet exit velocity profile effects on it were considered for H=3, Re=200 - 2000. Results show that vortical flow forms in turn along the confinement and impingement plates as the Reynolds number increases and such a complicated flow pattern has never been reported prior. The jet exit velocity profile is shown to do an important role in determining the position of vortex flow and its size as well as in stagnation and wall jet flow region. Parabolic jet exit profile results in peak of skin friction 1.4-1.6 times greater than that of uniform profile. The channel height effects are also studied and shown to have an effect on flow pattern similar to that of Reynolds number. Also shown is that effects of the jet exit velocity profile becomes less significant over a certain channel height.

터빈블레이드의 냉각에서 충돌제트에 의해 변화되는 유동 및 열전달 특성에 관한 수치해석적 연구 (A numerical study of flow and heat transfer characteristics varied by impingement jet in turbine blade cooling)

  • 이정희;김신일;유홍선;최영기
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.4013-4026
    • /
    • 1996
  • A numerical simulation has been carried out for the jet impinging on a flat plate and a semi-circular concave surface. In this computation finite volume method was employed to solve the full Navier-Stokes equation based on a non-orthogonal coordinate with non staggered variable arrangement. The standard k-.epsilon. turbulent model and low Reynolds number k-.epsilon. model(Launder-Sharmar model) with Yap's correction were adapted. The accuracy of the numerical calculations were compared with various experimental data reported in the literature and showed good predictions of centerline velocity decay, wall pressure distribution and skin friction. For the jet impingement on a semi-circular concave surface, potential core length was calculated for two different nozzle(round edged nozzle and rectangular edged nozzle) to consider effects of the nozzle shape. The result showed that round edged nozzle had longer potential core length than rectangular edged nozzle for the same condition. Heat transfer rate along the concave surface with constant heat flux was calculated for various nozzle exit to surface distance(H/B) in the condition of same jet velocity. The maximum local Nusselt number at the stagnation point occurred at H/B = 8 where the centerline turbulent intensity had maximum value. The predicted Nusselt number showed good agreement with the experimental data at the stagnation point. However heat transfer predictions along the downstream were underestimated. This results suggest that the improved turbulence modeling is required.