• Title/Summary/Keyword: Jet Impingements

Search Result 6, Processing Time 0.02 seconds

Local Heat Transfer Characteristics in Convective Partial Boiling by Impingement of Free-Surface/Submerged Circular Water Jets (미세 원형 충돌수제트의 부분 대류비등에 있어서 자유표면/잠입 제트의 국소 열전달 특성)

  • 조형희;우성제;신창환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.441-449
    • /
    • 2002
  • Single-phase convection and partial nucleate boiling in free-surface and submerged jet impingements of subcooled water ejected through a 2-mm-diameter circular pipe nozzle were investigated by local measurements. Effects of jet velocity and nozzle-to-imping-ing surface distance as well as heat flux on distributions of wall temperature and heat transfer coefficients were considered. Incipience of boiling began from far downstream in contrast with the cases of the planar water jets of high Reynolds numbers. Heat flux increase and velocity decrease reduced the temperature difference between stagnation and far downstream regions with the increasing influence of boiling in partial boiling regime. The chance in nozzle-to-impinging surface distance from H/d=1 to 12 had a significant effect on heat transfer around the stagnation point of the submerged jet, but not for the free-surface jet. The submerged jet provided the lower cooling performance than the free-surface jet due to the entrainment of the pool fluid of which temperature increased.

Study of Micro-Supersonic Impinging Jets and Its Application to the Laser Machining (마이크로 초음속제트의 충돌유동과 레이저 가공 응용에 관한 연구)

  • Min, Seong-Kyu;Yu, Dong-Ok;Lee, Yeol;Cheong, Jo-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • Characteristics of micro-sonic/supersonic axi-symmetric jet impinging on a flat plate with a pre-drilled hole were both experimentally and numerically studied, to observe the role of assist-gas jet to eject melted materials from the cut zone in the laser machining. For various Mach numbers of the nozzle and the total pressures of the assist gas, detailed impinging jet flow structures over the plate and the variations of mass flux through the pre-drilled hole were observed. It was found that the present experimental and numerical results show a good agreement, which proves the accountability of the present work. From the present study, it was also observed that the mass flow rate through the hole was closely related with the total pressure loss caused by the Mach disc on the work piece, and that supersonic nozzle could perform more efficient roles as blowing the assist-gas jet in the laser machining, as compared to sonic nozzles.

Study of Characteristics of Assist Gas in Laser Machining Using Flow Visualization Techniques (유동가시화 기법을 이용한 레이저가공의 보조가스 충돌특성에 관한 연구)

  • Son, Sang-Hyuk;Lee, Yeol;Min, Seong-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.153-160
    • /
    • 2011
  • The characteristics of supersonic coaxial/off-axis jet impingements on a slanted kerf surface were experimentally studied, to investigate the role of the assist gas that removes molten materials from cut zone formed by laser machining. In this parametric study, hundreds of high-resolution schlieren images were obtained for various gas pressures, distances between nozzle exit and kerf surface, kerf widths, and alignments of off-axis nozzle. It was noticed that simply increasing the assist gas pressure was not effective in eliminating the flow separation that occurs downstream of the kerf surface. However, it was also observed that by increasing the kerf width and utilizing off-axis nozzles, the separation of the assist gas on the kerf surface can be weakened. The effect of the distance between the nozzle exit and the kerf surface on the characteristics of separation occurring on the kerf surface was found to be lower in the case of supersonic nozzles than that in the case of sonic nozzles.

Computational Study of Impingement Characteristics of Assist Gas from Coaxial/Off-axis Nozzles in Laser Machining (레이저 가공에서 동축/탈축 보조가스의 충돌특성에 관한 수치해석적 연구)

  • Yoon, Shi-Kyung;Sung, Hong-Gye;Lee, Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.14-19
    • /
    • 2010
  • A computational study was carried out to analyze the characteristics of supersonic (Mach 2.0) coaxial/off-axis jet's impingements on a slanted kerf surface in laser machining. The effects of various parameters such as gas pressure, distance between nozzle exit and kerf edge surface, and application of off-axis nozzles on the impingement phenomena of the assist-gas on kerf surface were observed. The present study showed that simply increasing the assist-gas pressure for coaxial supersonic nozzle was not effective to alleviate the strength of flow separation on kerf surface. It also presented the optimized operating condition of the coaxial nozzle to have the highest skin friction values over kerf surface.

Numerical Simulation of Flow and Heat Transfer Characteristics of Impinging Jet Using $k-{\varepsilon}-{\overline{v^{'2}}}$ Model ($k-{\varepsilon}-{\overline{v^{'2}}}$난류 모델을 이용한 충돌 제트의 유동 및 열전달 특성에 관한 수치해석적 연구)

  • Choi, Bum-Ho;Lee, Jung-Hee;Choi, Young-Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.204-213
    • /
    • 2000
  • This study deals with jet impingement, which is extensively used in the process industries to achieve intense heating, cooling or drying rates and also widely employed as a test flow for turbulent models due to its complex flow configuration, on a flat plate by numerical methods. In this calculation, the finite volume method was employed to solve the Navier-stokes equation based on the non-orthogonal coordinate with non-staggered variable arrangement. To get a better understanding for the fluid flow and heat transfer characteristics of the turbulent jet impingements, $k-{\varepsilon}-{\overline{v^{'2}}}$ turbulent model was adapted and compared with the experimental data and the result of standard $k-{\varepsilon}$ turbulent model. Numerical calculations were carried out with various flow rates, nozzle to plate distances. In the case of the axisymmetric jet impingement on a flat plate, $k-{\varepsilon}-{\overline{v^{'2}}}$ turbulent model showed better agreement with the experimental data than the standard $k-{\varepsilon}$ turbulent model in the prediction of the mean velocity profiles, the turbulent velocity profiles. the turbulent shear stress and the heat transfer rate. The highest heat transfer rate can be obtained when the impingement occurs within the potential core..

Measurement of Heat Transfer Coefficient in a Duct with Double Imingement Jets (이중 충돌 제트를 갖는 내부 유로의 열전달 계수 측정)

  • Kwak, Jae-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • Averaged heat transfer coefficients in the trailing edge model of a turbine blade with double impingements were measured using transient liquid crystals technique and conventional copper plate-thermocouple technique. The detailed distributions of heat transfer coefficients by transient liquid crystals technique were also presented. Results showed that increased heat transfer coefficient due to the inpingements and the averaged heat transfer coefficients increased as Reynolds number increased. Results by transient liquid crystals technique showed that the heat transfer coefficient strongly depended on the main stream temperature used in heat transfer coefficient calculation. The averaged heat transfer coefficients measured by different methods showed similar trend as Reynolds number changed, but the value varied up to 40% depending on the measurement technique.

  • PDF