• 제목/요약/키워드: Jet Fan

검색결과 106건 처리시간 0.028초

Performance Analysis of an Aircraft Gas Turbine Engine using Particle Swarm Optimization

  • Choi, Jae Won;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.434-443
    • /
    • 2014
  • A turbo fan engine performance analysis and the optimization using particle swarm optimization(PSO) algorithm have been conducted to investigate the effects of major performance design parameters of an aircraft gas turbine engine. The FJ44-2C turbofan engine, which is widely used in the small business jet, CJ2 has been selected as the basic model. The design parameters consists of the bypass ratio, burner exit temperature, HP compressor ratio, fan inlet mass flow, and nozzle cooling air ratio. The sensitivity analysis of the parameters has been evaluated and the optimization of the parameters has been performed to achieve high net thrust or low specific fuel consumption.

Optimization of Blade Profile of a Plenum Fan

  • Wu, Lin;Dou, Hua-Shu;Wei, Yikun;Chen, Yongning;Cao, Wenbin;Ying, Cunlie
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권1호
    • /
    • pp.95-106
    • /
    • 2016
  • A method of optimization design for the blade profile of a centrifugal impeller by controlling velocity distribution is presented, and a plenum fan is successfully designed. This method is based on the inner flow calculation inside the centrifugal impeller, and is related to the distribution of relative velocity. The results show that after optimization, the boundary layer separation on the suction surface has been inhibited and the stability of plenum fan is improved. The flow at the impeller outlet is also studied, and the jet-wake pattern at the impeller outlet is improved obviously by optimization. The calculation result shows that the static pressure and static pressure efficiency can be increased by 15.4% and 21.4% respectively.

원형 제트 충돌 열전달과 유동 특성에 관한 실험적 연구 : 노즐 벽 두께와 노즐 출구 압력의 영향 (An Experimental Study on Heat Transfer and Flow Characteristics of a Circular Impinging Jet on a Flat Plate : Effects of Nozzle Wall Thickness and Nozzle Exit Pressure)

  • 윤상헌;양근영;손동기;최만수
    • 대한기계학회논문집B
    • /
    • 제23권10호
    • /
    • pp.1285-1295
    • /
    • 1999
  • An experimental study on heat transfer and flow characteristics of a circular impinging jet on a flat plate has been carried out. Of particular interests are the effects of nozzle wall thickness and nozzle exit pressure. Experimental apparatus has been designed to view heating plate coated by TLC from the opposite side of the nozzle in order to measure heat transfer rates for cases of very small nozzle to plate spacings. A visualization study of jet flows has also been performed. As the nozzle wall thickness increases at small nozzle to plate spacings, the effect of mixing is inhibited due to the confinement caused by the finite nozzle wall, consequently, heat transfer rates have been decreased. At small nozzle to plate spacings, heat transfer rates and nozzle exit pressures are increased together, therefore, enhancement of heat transfer at small nozzle to plate spacings should be considered in conjunction with the need of more fan power to generate the same Reynolds numbers.

Structural Analysis of Lift-Fan Rotor for Jet-VTOL Aircraft

  • Hojo, Masahiro;Ogawa, Akinori;Saito, Yoshio;Hashimoto, Ryosaku
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.521-523
    • /
    • 2004
  • The Japan Aerospace Exploration Agency (JAXA) has proposed new vertical take-off and landing (VTOL) aircraft known as the Jet-VTOL aircraft shown in Fig.1. The Jet-VTOL aircraft is based on a canard wing configuration. The aircraft has the clustered lift-fans mounted near the center of gravity for vertical flight, and has the clustered fans mounted beside the vertical tail for cruise flight. Both fans are driven by the core engine mounted inside the aft end of fuselage. The propulsion system is innovative and attractive not to be seen even in the world.

  • PDF

일산화탄소 농도 예측 기능을 사용한 터널 환기 제어 알고리즘 (A Tunnel Ventilation Control Algorithm by Using CO Density Prediction Algorithm)

  • 한도영;윤진원
    • 설비공학논문집
    • /
    • 제16권11호
    • /
    • pp.1035-1043
    • /
    • 2004
  • For a long road tunnel, a tunnel ventilation system may be used in order to reduce the pollution level below the required level. To control the tunnel pollution level, a closed loop control algorithm may be used. The feedforward prediction algorithm and the cascade control algorithm were developed to regulate the CO level in a tunnel. The feedforward prediction algorithm composed of the traffic estimation algorithm and the CO density prediction algorithm, and the cascade control algorithm composed of the jet fan control algorithm and the air velocity setpoint algorithm. The verification of control algorithms was carried out by dynamic models developed from the actual tunnel data. The simulation results showed that control algorithms developed for this study were effective for the control of the tunnel ventilation system.

Performance Prediction and Flow Field Calculation for Airfoil Fan with Impeller Inlet Clearance

  • Kang, Shin-Hyoung;Cao, Renjing;Zhang, Yangjun
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.226-235
    • /
    • 2000
  • The performance prediction of an airfoil fan using a commerical code, STAR/CD, is verified by comparing the calculated results with measured performance data and velocity fields of an airfoil fan. The effects of inlet tip clearance on performance are investigated. The calculations overestimate the pressure rise performance by about 10-25 percent. However, the performance reduction due to tip clearance is well predicted by numerical simulations. Main source of performance decrease is not only the slip factor but also impeller efficiency. The reduction in performance is 12-16 percent for 1 percent gap of the diameter. The calculated reductions in impeller efficiency and slip factor are also linearly proportional to the gap size. The span-wise distributions of phase averaged velocity and pressure at the impeller exit are strongly influenced by the radial gap size. The radial component of velocity and the flow angle increase over the passsage as the gap increases. The slip factor decreases and the loss increases with the gap size. The high velocity of leakage jet affects the impeller inlet and passage flows. With a larger clearance, the main stream moves to the impeller hub side and high loss region extends from the shroud to the hub.

  • PDF

Flow-induced pressure fluctuations of a moderate Reynolds number jet interacting with a tangential flat plate

  • Marco, Alessandro Di;Mancinelli, Matteo;Camussi, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.243-257
    • /
    • 2016
  • The increase of air traffic volume has brought an increasing amount of issues related to carbon and NOx emissions and noise pollution. Aircraft manufacturers are concentrating their efforts to develop technologies to increase aircraft efficiency and consequently to reduce pollutant discharge and noise emission. Ultra High By-Pass Ratio engine concepts provide reduction of fuel consumption and noise emission thanks to a decrease of the jet velocity exhausting from the engine nozzles. In order to keep same thrust, mass flow and therefore section of fan/nacelle diameter should be increased to compensate velocity reduction. Such feature will lead to close-coupled architectures for engine installation under the wing. A strong jet-wing interaction resulting in a change of turbulent mixing in the aeroacoustic field as well as noise enhancement due to reflection phenomena are therefore expected. On the other hand, pressure fluctuations on the wing as well as on the fuselage represent the forcing loads, which stress panels causing vibrations. Some of these vibrations are re-emitted in the aeroacoustic field as vibration noise, some of them are transmitted in the cockpit as interior noise. In the present work, the interaction between a jet and wing or fuselage is reproduced by a flat surface tangential to an incompressible jet at different radial distances from the nozzle axis. The change in the aerodynamic field due to the presence of the rigid plate was studied by hot wire anemometric measurements, which provided a characterization of mean and fluctuating velocity fields in the jet plume. Pressure fluctuations acting on the flat plate were studied by cavity-mounted microphones which provided point-wise measurements in stream-wise and spanwise directions. Statistical description of velocity and wall pressure fields are determined in terms of Fourier-domain quantities. Scaling laws for pressure auto-spectra and coherence functions are also presented.

OBSERVATIONS OF EUV RECURRING JETS IN AN ACTIVE REGION CONFINED BY CORONAL LOOPS

  • Zheng, Yan-Fang;Wang, Feng;Ji, Kai Fan;Deng, Hui
    • 천문학회지
    • /
    • 제46권5호
    • /
    • pp.183-190
    • /
    • 2013
  • Recurring jets, which are jets ejected from the same site, are a peculiar type among various solar jet phenomena. We report such recurring jets ejecting from the same site above an active region on January 22, 2012 with high-resolution multi-wavelength observations from Solar Dynamics Observatory(SDO). We found that the recurring jets had velocities, lengths and lifetimes, but had similar directions. The visible brightening appeared at the jet base before each jet erupted. All the plasma produced by the recurring jets could not overcome the large coronal loops. It seemed that the plasma ejecting from the jet base was confined and guided by preexisting coronal loops, but their directions were not along the paths of the loops. Two of the jets formed crossing structures with the same preexisting filament. We also examined the photospheric magnetic field at the jet base, and observed a visible flux emergence, convergence and cancellation. The four recurring jets all were associated with the impulsive cancellation between two opposite polarities occurring at the jet base during each eruption. In addition, we suggest that the fluxes, flowing out of the active region, might supply the energy for the recurring jets by examining the SDO/Helioseismic and Magnetic Imager (HMI) successive images. The observational results support the magnetic reconnection model of jets.

진공청소기 흡입 노즐의 저소음화를 위한 유동 해석

  • 엄윤섭;김대식;박병일
    • 소음진동
    • /
    • 제7권6호
    • /
    • pp.888-893
    • /
    • 1997
  • 진공청소기에서 발생하는 주 소음원은 홴(fan)에 의한 공력 소음및 모터의 진동에 기인하는 청소기 본체의 소음과 청소기 흡입 노즐(nozzle)에서 발생하는 공력 소음으로 나눌수 있다. 청소기 본체의 주 소음원인 원심 홴(centrifugal fan)은 고속으로 회전하며 구조가 복잡함으로 인해 소음 해석에 필수적인 유동의 해석이 어려우나 이산 와류법을 이용한 소음원 해석등의 연구가 진행중이다. 진공청소기 노즐부에서는 일반적인 분류(jet)의 토출과는 상이하게 공기를 흡입하는 구조로 소음 발생 기구의 모델링 (modeling)에 대한 연구는 거의 전무하다. 공력 소음은 Lighthill에 의하면 비정상 유체가 운동할 때 나타나는 변형에 기인한다고 하며 주변에 고정 경계면이 없는 상태에서 유체가 흐를 때 발생하는 소음을 이론적으로 연구하였다. 그후 Curle에 의해서 고체 벽면의 영향을 고려한 방정식의 해가 구해졌다.

  • PDF

도로터널 환기/제연 시스템 시뮬레이션 (A NUMERICAL STUDY OF THE VENTILATION AND FIRE SIMULATION IN A ROAD TUNNEL)

  • 박종택;원찬식;허남건;차철현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.207-212
    • /
    • 2005
  • In designing a ventilation system of a road tunnel, a possibility of using the system as a smoke control system in case of a tunnel fire has to be considered. In the present study, a numerical simulation on ventilation system is performed considering jet fan operations and moving traffic. A fire-mode operation by reversing some fan operations in case of a tunnel fire is also simulated. The results show that ventilation operation can control the pollutants effectively, and fire-mode operation can control smoke and temperature effectively to prevent a disaster.

  • PDF