• Title/Summary/Keyword: Jasmonate

Search Result 123, Processing Time 0.029 seconds

Up-regulation of Asiaticoside Biosynthesis by Methyl Jasmonate and Thidiazuron in Centella asiatica L. Urban

  • Kim, Ok-Tae;Kim, Min-Young;Ahn, Jun-Cheul;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.233-236
    • /
    • 2005
  • Centella asiatica accumulates large amounts of triterpene saponin, such as centellasaponin, asiaticoside, madecassoside. We examined the effect of two candidates, MJ (Methyl jasmonate) and TDZ (thidiazuron), on asiaticoside production and the accumulation of bAS mRNA associated with asiaticoside biosynthesis in leaves of cultured whole plants. The growth of whole plants treated with 0.1 mM MJ was found to decrease significantly, however, the growth of whole plants treated with 0.1 mM MJ plus 0.025 mg/l TDZ was better than that treated with MJ alone. When MJ alone was added to culture medium, asiaticoside contents in leaves were higher than that of control after 7 days of treatments. The maximum level of bAS $({\beta}-amyrin\;synthsae)$ mRNA in leaves of whole plant treated TDZ and MJ was transiently observed after exposure to 5 days. These results showed the up-regulation of bAS gene by adding TDZ and MJ at the molecular level, however, synergic effects of TDZ and MJ on asiaticoside biosynthesis were not testified.

Plant Defence Responses: Current Status and Future Exploitation

  • Yun, Byung-Wook;Gray J, Loake
    • Journal of Plant Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Plants have developed a sophisticated battery of defence responses to protect themselves against attempted pathogen ingress. Manipulation of these defence mechanisms may provide significant opportunities for crop improvement. While plant resistance genes have had a long service history in plant breeding, they possess significant limitations. Recent advances are now providing significant insights into strategies designed to increase the field durability of this class of genes. Hypersensitive cell death is a common feature underlying the deployment of plant defence responses against biographic pathogens. In contrast, necrotrophic pathogens actively kill plant cells. Recently, transgenic plants have been developed that either promote or suppress cell death, providing resistance against either biotrophic or necrotrophic pathogens respectively. Methyl-jasmonate is a key signalling molecule in the establishment of resistance against some fungal pathogens. Increasing the concentration of this molecule in plant cells has been shown to increase resistance against Botrytis cineria, without significantly imparting plant growth or development. Due to the multifarious infection strategies employed by plant pathogens, how-ever, it is unlikely a single commercial product will prove a panacea for global disease control. Future stategies will more likely entail an integrated disease management approach.

Effect of R. leguminisarum Pre-incubated with Inducers, Naringenin and Methyl-jasmonate, on Nitrogen Fixation and the Growth of Pea at Different Salinity Levels

  • Lee, Kyung-Dong
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.362-367
    • /
    • 2008
  • The legume-rhizobia symbiosis is an important source of plant growth and nitrogen fixation for many agricultural systems. This study was conducted to investigate the effects of salinity stress on nitrogen fixation and growth of pea (Pisum sativum L.), which has antimutagenic activities against chemical mutagen, inoculated with R. leguminosarum bv. viciae cultured with additional plant-to-rhizobia signal compounds, naringenin (NA,15 uM), methyl-jasmonate (MJ, 50 uM) or both, under greenhouse conditions. Three salinity levels (0.6, 3.0 and $6.0\;dS\;m^{-1}$) were imposed at 3 days after transplanting and maintained through daily irrigations. Addition of signal compounds under non-stress and stress conditions increased dry weight, nodule numbers, leaf area and leaf greenness. The inducers increased photosynthetic rate under non-stress and stress conditions, by approximately 5-20% when compared to that of the non-induced control treatment. Under stress conditions, proline content was less in plants treated with plant-to-bacteria signals than the control, but phenol content was significantly increased, compared to that of the control. The study suggested that pre-incubation of bacterial cells with plant-to-bacteria signals could enhance pea growth, photosynthesis, nitrogen fixation and biomass under salinity stress conditions.

Molecular Characterization of a PR4 Gene in Chinese Cabbage

  • Chung, Sam-Young;Lee, Kyung-Ah;Oh, Kyung-Jin;Cho, Tae-Ju
    • Animal cells and systems
    • /
    • v.9 no.4
    • /
    • pp.239-244
    • /
    • 2005
  • A cDNA clone for a wound- and pathogen-induced gene in Chinese cabbage (Brassica rapa subsp. pekinensis) was isolated and characterized. The cabbage gene, designated BrPR4, encodes a pathogenesis-related protein 4 (PR4) of 140 amino acids. The BrPR4 protein shows high similarity with wound-inducible antifungal proteins of tobacco, potato, barley, and wheat. The BrPR4 gene is locally induced by a nonhost pathogen, Pseudomonas syringae pv. tomato, that elicits a hypersensitive response in Chinese cabbage. Treatment of the cabbage leaves with benzothiadiazole (BTH), methyl jasmonate or ethephon showed that the BrPR4 gene expression is strongly induced by ethylene, but not by methyl jasmonate or BTH. The BrPR4 gene is also activated by wounding. Interestingly, however, the wound-inducible BrPR4 gene expression is repressed by salicylic acid or BTH, suggesting that there is cross-talk between salicylate-dependent and -independent signaling pathways.

Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles

  • Song, Geun Cheol;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.724-732
    • /
    • 2018
  • Plant defence responses to various biotic stresses via systemic acquired resistance (SAR) are induced by avirulent pathogens and chemical compounds, including certain plant hormones in volatile form, such as methyl salicylate and methyl jasmonate. SAR refers to the observation that, when a local part of a plant is exposed to elicitors, the entire plant exhibits a resistance response. In the natural environment, plants are continuously exposed to avirulent pathogens that induce SAR and volatile emissions affecting neighbouring plants as well as the plant itself. However, the underlying mechanism has not been intensively studied. In this study, we evaluated whether plants "memorise" the previous activation of plant immunity when exposed repeatedly to plant defensive volatiles such as methyl salicylate and methyl jasmonate. We hypothesised that stronger SAR responses would occur in plants treated with repeated applications of the volatile plant defence compound MeSA than in those exposed to a single or no treatment. Nicotiana benthamiana seedlings subjected to repeated applications of MeSA exhibited greater protection against Pseudomonas syringae pv. tabaci and Pectobacterium carotovorum subsp. carotovorum than the control. The increase in SAR capacity in response to repeated MeSA treatment was confirmed by analysing the defence priming of the expression of N. benthamiana Pathogenesis-Related 1a (NbPR1a) and NbPR2 by quantitative reverse-transcription PCR compared with the control. We propose the concept of plant memory of plant defence volatiles and suggest that SAR is strengthened by the repeated perception of volatile compounds in plants.