• Title/Summary/Keyword: Japanese quail

Search Result 52, Processing Time 0.022 seconds

Studies on Spermatogenesis in Japanese Quail(Coturnix coturnix japonica) (메추리(Coturnix coturnix)의 정자 발생에 관한 연구)

  • 김재홍;박영석
    • Korean Journal of Poultry Science
    • /
    • v.16 no.2
    • /
    • pp.91-100
    • /
    • 1989
  • This study was conducted to observe 1) the changes of cellular association in seminiferous tubles from 2 to 8 weeks of age, and 2) the cycle phenomena of seminiferous epithelia at 14 weeks of age in Japanese quail. Total 80 birds were examined at a week interval from 2 to 8 weeks, and 14 weeks of age. The results were summarized as follows: 1) The body and testis weights showed most prominent increase during 4 to 5 weeks and 6 to 8 weeks of age respectively. And also the diameters of seminiferous tubles were abruptly enlaged during 6 to 8 weeks of age. 2) Genocytes in the seminiferous tubles were still in existence at 3 weeks of age, however they did not come out after 4 weeks of age. Spermatogonia, primary spermatocytes and spermatids made their first arpearances in the seminiferous from 3, 4 and 6 weeks of age, respectively. Spermatozoa were observed for the first time at 7 weeks of age, but full spermatogenic activity was completed from 8 weeks of age. 3) At 14 weeks of age, the average weight at testis was 3.7g and its ratio to the body weight was approximately 3.0 percent. And at this age, average diameter of seminiferous tubules was 192.08 $\mu\textrm{m}$, and average numbers of spermatogonia, spermatocytes, spermatids and spermatozoa within the cross section of seminiferous tubules were 7.74, 40.81, 28.42, 104.55 and 105.98, respectively. Spermatogonia and spermatid were classfied into 2 and 3 types, respectively. 4) At 14 weeks of age, the cycle of seminiferous epithelium could be divided into S stages with following characteristics. (1) Stage I: Seminiferous tubules showing type I and II spermatids. (2) Stage II: Seminiferous tubules showing type III spermatids only. (3) Stage III: Immature spermatozoa gathered near the sertoli cytoplasm. (4) Stage IV: Forming a bundle of 15-20 spematozoa. (5) Stage V: Spermatozoa bundle leaving the sertoli cytoplasm into lumen of the seminferous tubule. 5) Usually 2-3 stages of the seminiferous epithelium cycle were concurrently appeared within a tubular cross section, and frequency of each stage from I to V within cross section of seminiferous tubules were 11.91%, 27.03%, 27.96%, 19.04% and 17.98%, respectively.

  • PDF

Development of Species-Specific PCR to Determine the Animal Raw Material (종 특이 프라이머를 이용한 동물성 식품원료의 진위 판별법 개발)

  • Kim, Kyu-Heon;Lee, Ho-Yeon;Kim, Yong-Sang;Kim, Mi-Ra;Jung, Yoo Kyung;Lee, Jae-Hwang;Chang, Hye-Sook;Park, Yong-Chjun;Kim, Sang Yub;Choi, Jang Duck;Jang, Young-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.347-355
    • /
    • 2014
  • In this study, the detection method was developed using molecular biological technique to distinguish authenticity of animal raw materials. The genes for distinction of species about animals targeted at Cytochrome c oxidase subunit I (COI), Cytochrome b (Cytb), and 16S ribosomal RNA (16S rRNA) genes in mitochondrial DNA. The species-specific primers were designed by that Polymerase Chain Reaction (PCR) product size was around 200 bp for applying to processed products. The target 24 raw materials were 2 species of domestic animals, 6 species of poultry, 2 species of freshwater fishes, 13 species of marine fishes and 1 species of crustaceans. The results of PCR for Rabbit, Fox, Pheasant, Domestic Pigeon, Rufous Turtle Dove, Quail, Tree Sparrow, Barn Swallow, Catfish, Mandarin Fish, Flying Fish, Mallotus villosus, Pacific Herring, Sand Lance, Japanese Anchovy, Small Yellow Croaker, Halibut, Jacopever, Skate Ray, Ray, File Fish, Sea Bass, Sea Urchin, and Lobster raw materials were confirmed 113 bp ~ 218 bp, respectively. Also, non-specific PCR products were not detected in compare species by species-specific primers. The method using primers developed in this study may be applied to distinguish an authenticity of food materials included animal raw materials for various processed products.