• 제목/요약/키워드: Japan Earthquake

검색결과 342건 처리시간 0.025초

한국 기록관의 지진 대비를 위한 국외 사례 검토 (Review of Overseas Cases for Earthquake Preparedness in Korean Archives)

  • 이상백
    • 한국기록관리학회지
    • /
    • 제19권3호
    • /
    • pp.29-48
    • /
    • 2019
  • 이 연구는 한국 기록관의 지진 대비 계획 수립을 위해서 기록관 지진 대비의 기본적인 사항과 지진 피해와 복구에 대한 실제 국외 사례 검토를 목적으로 수행되었다. 연구 결과로, 첫째, 기록관의 지진 대비를 위해서 우선적으로 검토해야 하는 지진의 기본적인 특성과 지진으로 발생할 수 있는 피해 상황을 정리하였고, 지진 대비 계획 수립의 방향 설정을 위해 재난 대비 계획을 검토한 후, 계획 수립의 핵심 요소인 '재난 대비 위원회와 업무 분담', '위험 평가 및 관리', '즉각적 대응을 위한 핸드북 작성', '복구 계획', '훈련', '협력 활동'을 지진 대비에 적용해보았다. 둘째, 지진에 익숙하지 않은 한국 기록관의 지진 대비 계획 수립에 시사점을 줄 수 있는 4가지 국외 사례를 검토하였다. 4가지 사례는 일본의 도서관 책 낙하 사례, 독일의 기록관 붕괴 사례, 뉴질랜드의 기록관 지진 피해 사례, 문화유산 분야의 지진 대비와 복구 사례로 각 사례의 핵심 내용을 검토하고 교훈과 한계점을 제시하였다. 셋째, 국외 사례의 교훈을 국내에 적용하기 위하여 사례에서 도출한 교훈, 지진 대비 계획 수립의 핵심 요소, 국내 기록 공공표준을 상호 연계하여 살펴보고 고려되어야 하는 사항을 제안하였다. 이 논문에서 검토한 사항들이 향후 국내 기록관이 실제 적용 가능한 계획을 수립하는데 일조하기를 기대한다.

한국 조적조 건물의 내진성능 및 지진피해율 평가 (Earthquake Damae Ratio Estimation and Seismic Capacity Evaulation of Existing unreinforced masonry building in Korea)

  • 강대언;양원직;이원호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.258-265
    • /
    • 2005
  • The purpose of this study is to provide basic information for unreinforced masonry building in Korea by application of the proposed seismic evaluation method. In this study, seismic capacities of 50 existing unreinforced masonry buildings are evaluated based on the proposed method. Also, relationships of seismic capacities between Korean earthquake damage ratios of Korean unreinforced masonry buildings are estimated. Results of this study were as follows; 1)Seismic retrofit was needed $4{\sim}48%$ in Korean unreinforced masonry buildings. 2)Korean unreinforced masonry buildings were expected to have severe damage under the earthquake intensity level experienced in Japan.

  • PDF

CURRENT ISSUES ON PRA REGARDING SEISMIC AND TSUNAMI EVENTS AT MULTI UNITS AND SITES BASED ON LESSONS LEARNED FROM TOHOKU EARTHQUAKE/TSUNAMI

  • Ebisawa, Katsumi;Fujita, Masatoshi;Iwabuchi, Yoko;Sugino, Hideharu
    • Nuclear Engineering and Technology
    • /
    • 제44권5호
    • /
    • pp.437-452
    • /
    • 2012
  • The Tohoku earthquake (Mw9.0) occurred on March 11, 2011 and caused a large tsunami. The Fukushima Dai-ichi NPP (F1-NPP) were overwhelmed by the tsunami and core damage occurred. This paper describes the overview of F1-NPP accident and the usability of tsunami PRA at Tohoku earthquake. The paper makes reference to the following current issues: influence on seismic hazard of gigantic aftershocks and triggered earthquakes, concepts for evaluating core damage frequency considering common cause failure with correlation coefficient against seismic event at multi units and sites, and concepts of "seismic-tsunami PSA" considering a combination of seismic motion and tsunami effects.

Early Emergency Responses of the Japan Atomic Energy Agency against the Fukushima Daiichi Nuclear Power Station Accident in 2011

  • Okuno, Hiroshi;Sato, Sohei;Kawakami, Takeshi;Yamamoto, Kazuya;Tanaka, Tadao
    • Journal of Radiation Protection and Research
    • /
    • 제46권2호
    • /
    • pp.66-79
    • /
    • 2021
  • Background: The Japan Atomic Energy Agency (JAEA) is specified in the Disaster Counter-measures Basic Act as a designated public corporation for dealing with nuclear disasters. Materials and Methods: The Nuclear Emergency Assistance and Training Center (NEAT) was established in 2002 as the activity base providing technical assistance to both national and local governments during nuclear emergencies. The NEAT has a robust structure and utilities and special installations, and it organizes training and exercises. Results and Discussion: Due to an offshore earthquake that caused a devastating tsunami in March 2011, a nuclear accident occurred at the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Station. The NEAT responded by conducting off-site environmental radiation monitoring and contamination screening, dispatching special vehicles, offering telephone consultations, and calculating the dispersion of radioactive materials. An examination of the emergency response activities revealed that the organization was prepared for these types of disasters and was able to plan long-term response. Conclusion: As a designated public corporation, the JAEA technically supports the national government, the Fukushima prefectural government, and the Ibaraki prefectural government, all of which responded to the off-site emergencies resulting from the March 2011 Fukushima Daiichi accident

동일본대지진 시 공급된 프리패브건축협회 및 종합건설사의 응급가설주택 특성에 관한 연구 - 이시노마키시(石巻市) 카이세이(開成)단지 및 오하시(大橋)단지를 중심으로 - (A Study of the Characteristics of Emergency Housing from Japan Prefabricated Construction Suppliers and Manufacturers Association and General Construction Companies Provided during the Great East Japan Earthquake - focusing on the Kaisei and Ohashi Complexes of Ishinomaki City -)

  • 이상희;김봉애
    • 대한건축학회논문집:계획계
    • /
    • 제36권4호
    • /
    • pp.61-70
    • /
    • 2020
  • The purpose of this study is to provide data for planning future temporary housing in Korea by comparing and analyzing the characteristics of emergency housing rapidly supplied by Japan Prefabricated Construction Suppliers and Manufacturers Association(JPA) and general construction companies, according to the supply subject in times of natural disasters in Japan. Literature reviews and on-site field investigations are conducted as research methods during the period of August 4th~9th, 2019. As subjects of study, the characteristics of two housing complex built in Ishinomaki City with different supply subjects were compared and analyzed. As a result of this study, Japan has a clear distinction of terms for emergency housing, which are divided into rental and construction types. With the close cooperation between the government, local governments and construction companies, providing a prompt systematic supply is possible. The characteristics of emergency housing are differ depending on supply subjects. The emergency housing of JPA has diversity of plane, two rooms facing south, and fast construction time, while the emergency housing of the general construction company has a flexible spatial transformation and excellence of materials.

가속도와 JMA진도 관계를 이용한 댐 시설의 지진 안정성 평가 (Assessment of Dam Seismic Safety using the Relationship between Acceleration and JMA Intensity)

  • 강기천;최병습;차기욱;정상인;이종욱
    • 한국지진공학회논문집
    • /
    • 제18권6호
    • /
    • pp.271-278
    • /
    • 2014
  • Seismic intensity deduced from instrumental data has been evaluated using the empirical relationship between intensity and peak ground acceleration (PGA) during an earthquake. The Japan Meteorological Agency (JMA) developed a seismic intensity meter, which can estimate the real-time seismic intensity from seismic motions observed at a local site to evaluate the damage during the earthquake more correctly. This paper proposes a practical application of the JMA intensity to dams during the 2013 earthquake in Yeongcheon, Korea. In the present paper, seismic intensity was estimated from the relationships between accelerations observed at Yeongcheon Dam. Estimated seismic intensities were in the range of 0 to 3, which was verified from the displacements of dams and the variation of the ground water level observed at Yeongcheon dam during the earthquake. The JMA intensity, which is determined by considering the frequency, duration of cyclic loading, etc., was 0 (zero) and there was no damage to Yeoncheon dam during the earthquake.

Seismic Risk Assessment of Existing Low-rise Reinforced Concrete Buildings in Korea

  • LEE, Kang Seok;Jung, Ju-Seong;Choi, Yun-Chul
    • Architectural research
    • /
    • 제20권1호
    • /
    • pp.17-25
    • /
    • 2018
  • Countermeasures against earthquake disasters such as the seismic capacity evaluation and/or retrofit schemes of buildings, especially existing low-rise reinforced concrete buildings, have not been fully performed since Korea had not experienced many destructive earthquakes in the past. However, due to more than 1200 earthquakes with low or moderate intensity in the off-coastal and inland of Korea during the past 20 years, and due to the recent moderate earthquakes in Korea, such as the 2016 Gyeongju Earthquake with M=5.8 and the 2017 Pohang Earthquake with M=5.4, the importance of the future earthquake preparedness measures is highly recognized in Korea. The main objective of this study is to provide the basic information regarding seismic capacities of existing low-rise reinforced concrete buildings in Korea. In this paper, seismic capacities of 14 existing low-rise reinforced concrete public buildings in Korea are evaluated based on the Japanese Standard for Evaluation of Seismic Capacity of Existing Reinforced Concrete Buildings. Seismic capacities between existing buildings in Korea and those in Japan is compared, and the relationship of seismic vulnerability of Korean buildings and Japanese buildings damaged due to severe earthquakes are also discussed. Results indicated that Korean existing low-rise reinforced concrete buildings have a narrow distribution of seismic capacities and they are relatively lower than Japanese buildings, and are also expected to have severe damage under the earthquake intensity level experienced in Japan. It should be noted from the research results that the high ductility in Korean existing low-rise buildings obtained from the Japanese Standard may be overestimated, because most buildings investigated herein have the hoop spacing wider than 30 cm. In the future, the modification of strength and ductility indices in the Japanese Standard to propose the seismic capacity evaluation method of Korean buildings is most needed.

일본 원전 내진설계 기술기준을 적용한 모의지진파(가속 도시간이력) 작성 (Generation of Design Time History Complying With Japanese Seismic Design Standards for Nuclear Power Plants)

  • 진승민;김용복;이용선;문일환
    • 한국지진공학회논문집
    • /
    • 제25권2호
    • /
    • pp.83-91
    • /
    • 2021
  • Seismic designs for Korean nuclear power plants (NPPs) under earthquakes' design basis are noticed due to the recent earthquake events in Korea and Japan. Japan has developed the technologies and experiences of the NPPs through theoretical research and experimental verification with extensively accumulated measurement data. This paper describes the main features of the design-time history complying with the Japanese seismic design standard. Proper seed motions in the earthquake catalog are used to generate one set of design time histories. A magnitude and epicentral distance specify the amplitude envelope function configuring the shape of the earthquake. Cumulative velocity response spectral values of the design time histories are compared and checked to the target response spectra. Spectral accelerations of the time histories and the multiple-damping target response spectra are also checked to exceed. The generated design time histories are input to the reactor building seismic analyses with fixed-base boundary conditions to calculate the seismic responses. Another set of design time histories is generated to comply with Korean seismic design procedures for NPPs and used for seismic input motions to the same reactor containment building seismic analyses. The responses at the dome apex of the building are compared and analyzed. The generated design time histories will be also applied to subsequent seismic analyses of other Korean standard NPP structures.

지진진동수에 따른 콘크리트 중력댐의 내진성능에 대한 해석적 사례연구 (Numerical Study on Earthquake Performance of Gravity Dam Considering Earthquake Frequencies)

  • 채영석;민인기
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.64-74
    • /
    • 2016
  • Recently, the seismic stability evaluation of concrete gravity dams is raised due to the failure of dams occurred by the Izmit, Turkey and JiJi, Taiwan earthquake in 1999. Dams failure may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about "earthquake - resistance" or "seismic safety" of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic stability of concrete gravity dams on the basis of the evaluation method of seismic stability of concrete gravity dams in U.S.A., Japan, Canada, and etc. Level 1 is a preliminary evaluation which is for purpose of screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. And level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dams on operation showed good seismic performance under designed artificial earthquake(KHC earthquake).

진동시험에 기초한 액상화 상세예측법 개발 (A New Assessment of Liquefaction Potential Based on the Dynamic Test)

  • 김수일;최재순;강한수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.245-252
    • /
    • 2004
  • When some enormous earthquake hazards broke out in the neighboring Japan and Taiwan, many Korean earthquake engineers thought that seismic guidelines must be adjusted safely and economically to consider the moderate earthquake characteristics. In the present aseismic guideline for liquefaction potential assessment, a simplified method using SPT-N value and a detail method based on the dynamic lab-tests were introduced. However, it is said that these methods based on the equivalent stress concept to simplify an irregular earthquake are not reliable to simulate the kaleidoscopical characteristics of earthquake loading correctly. Especially, even though various data from the dynamic lab-test can be obtained, only two data, a maximum cyclic load and a number of cycle at an initial liquefaction are used to determine the soil resistance strength in the detailed method. In this study, a new assessment of liquefaction potential is proposed and verified. In the proposed assessment, various data from dynamic lab-tests are used to determine the unique soil resistance characteristic and a site specific analysis is introduced to analyze the irregular earthquake time history itself. Also, it is found that the proposed assessment is reasonable because it is devised to reflect the changeable soil behavior under dynamic loadings resulted from the generation and development of excess pore water pressure.

  • PDF