• Title/Summary/Keyword: Janggi Group

Search Result 18, Processing Time 0.019 seconds

The Occurrence and Formation Mode of Basaltic Rocks in the Tertiary Janggi Basin, Janggi Area (제 3기 장기분지에 나타나는 현무암질암의 산상과 형성기구)

  • Kim, Choon-Sik;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.2 s.48
    • /
    • pp.73-81
    • /
    • 2007
  • A basaltic tuff formation (Upper Basaltic Tuff of the Janggi Group) occurs in close association with basalt (Yeonil Basalt) at the Tertiary Janggi basin. The purpose of this paper is to describe the occurrence of the basaltic tuff and associated basalt and to determine their mode of formation. The basaltic rocks of the study area show few distinct lithofacies, all of which are originated from the interaction of basaltic magma with external water. The four lithofacies include (1) sideromelane shard hyaloclastite, (2) pillow breccia, (3) entablature-jointed basalt, and (4) in-situ breccia. The sideromelane shard hyaloclastite constitutes most of the Upper Basaltic Tuff and has a gradual contact with the pillow breccia. The pillow breccia consists of a poorly sorted mixture of isolated and broken pillows, and small basalt globules and fragments engulfed in a volcanic matrix of sideromelane shard hyaloclastite. The entablature-jointed basalt occurs as a small body within the hyaloclastite. It is characterized by irregularly-curved joints known as entablature. The in-situ breccia occurs as a marginal facies of entablature-jointed basalt, and its width varies from 10 to 30m. The result of this study indicates that the basaltic tuff and associated basalts of the study area were produced by the volcanic activity of same period and the basaltic tuff was formed by subaqueous eruption of basaltic lava followed by nonexplosive quench fragmentation.

Paleoenvironmental Factor on the Fossil Woods from the Lower and Upper Coal-bearing Formations of the Janggi Group (Miocene) of Korea (포항 분지 장기층군의 하부 및 상부 함탄층(마이오세)의 화석목재에 나타난 고환경 요인)

  • Park, No-Tae;Kim, Jong-Heon
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.573-583
    • /
    • 2010
  • A paleobotanical study of the fossil woods has been carried out from the Tertiary Janggi Group, Pohang Basin. Three species belonging to three genera of Ulmus sp., Prunus sp., and Acer sp. were identified from the Lower Coalbearing Formation, and two species of two genera of Taxodioxylon sp. and Fagus hondoensis (Watari) from the Upper Coal-bearing Formation. As our specimens are mostly poorly preserved, it is difficult to give clear specific names, but mostly are all characteristic constitutional elements of the Miocene fossil woods in Korea. The values of mean sensitivity measured from the fossil woods of Lower and Upper Coal-bearing Formations are 0.367 and 0.370 respectively, but they are more than 0.30. Based on the present two data mentioned above, it stands to reason that there were many changes in the water supply to the roots of the woods or having influence to some degree each year because of the seasonal changes in rainfall.

Revised Fission-track Ages and Chronostratigraphies of the Miocene Basin-fill Volcanics and Basements, SE Korea (한국 동남부 마이오세 분지 화산암과 기반암의 피션트랙 연대 재검토와 연대층서 고찰)

  • Shin, Seong-Cheon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.83-115
    • /
    • 2013
  • Erroneous fission-track (FT) ages caused by an inappropriate calibration in the initial stage of FT dating were redefined by re-experiments and zeta calibration using duplicate samples. Revised FT zircon ages newly define the formation ages of Yucheon Group rhyolitic-dacitic tuffs as Late Cretaceous to Early Paleocene ($78{\pm}4$ Ma to $65{\pm}2$ Ma) and Gokgangdong rhyolitic tuff as Early Eocene ($52.1{\pm}2.3$ Ma). In case of the Early Miocene volcanics, FT zircon ages from a dacitic tuff of the upper Hyodongri Volcanics ($21.6{\pm}1.4$ Ma) and a dacitic lava of the uppermost Beomgokri Volcanics ($21.3{\pm}2.0$ Ma) define chronostratigraphies of the upper Beomgokri Group, respectively in the southern Eoil Basin and in the Waeup Basin. A FT zircon age ($19.8{\pm}1.6$ Ma) from the Geumori dacitic tuff defines the time of later dacitic eruption in the Janggi Basin. Based on FT zircon ages for dacitic rocks and previous age data (mostly K-Ar whole-rock, partly Ar-Ar) for basaltic-andesitic rocks, reference ages are recommended as guides for stratigraphic correlations of the Miocene volcanics and basements in SE Korea. The times of accumulation of basin-fill sediments are also deduced from ages of related volcanics. Recommended reference ages are well matched to the whole stratigraphic sequences despite complicated basin structures and a relative short time-span. The Beomgokri Group evidently predates the Janggi Group in the Eoil-Waeup basins, while it is placed at an overlapped time-level along with the earlier Janggi Group in the Janggi Basin. Therefore, the two groups cannot be uniformly defined in a sequential order. The Janggi Group of the Janggi Basin can be evidently subdivided by ca. 20 Ma-basis into two parts, i.e., the earlier (23-20 Ma) andesitic-dacitic and later (20-18 Ma) basaltic strata.

A Study on Geology of Clay Mineral Deposits of Pohang-Ulsan Area and their Physico-Chemical Properties (포항-울산간의 점토자원의 지질과 그 물리화학적 특성에 관한 연구)

  • Kim, Ok Joon;Lee, Ha Young;Kim, Suh Woon;Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.4 no.4
    • /
    • pp.167-215
    • /
    • 1971
  • I. Purpose and Importance of the Study The purpose of the present study is to clarify to geological, mineralogical, and physico-chemical properties of the clay minerals deposits imbedded in the Tertiary sediments in the areas between. Pohang and Ulsan along southeastern coastal region of Korea. These clays are being mined and utilized for filter and insecticide after activation or simple pulverizing, nontheless activated clays are short coming as chemical industry in Korea has been rapidly grown in recent years. In spite of such increase in clay demand, no goological investigation on clay deposits nor physico-chemical properties of the clays have been carried out up to date. Consequently activated clays produced in Korea is not only of low grade but also of shortage in supply, so that Korea has to import activated clays of better grade. The importance of the present study lies, therefore, on that guiding principle could be laid down by knowing stratigraphical horizons, of clay deposits and fundamental data of improving grade of activated clays might be derived from the results of physico-chemical examinations. II. Contents and Scope of the study The contents of the study are pinpointed down in the following two subjects: 1) General geological investigation of Tertiary formations distributed in the areas between Pohang and UIsan, and detail geological study of the bentonitic clay deposits imbedded in them. 2) To clarifty physico-chemical characteristics of the clays by means of chemical analysis, X-ray diffraction and electron microscope. The scope of the study involves the following there points: i) Regional geological investigation-This investigation has been carried out in order to find out the distribution of Tertiary sediments and exact location of clay mineral deposits in the areas between Pohang and UIsan. ii) Detail geological investigation-This has been concentrated in and around the clay deposits which. had been found out by the regional investigation. iii) Laboratory researchs include i) age determination and correlation of Tertiary sediments by paleontological study, and ii) Chemical analysis, X-ray diffraction, and electron microscopic studies on clays, samples taken from various clay deposits. III. Research Results and Suggestions 1) The geology of the area investigated is composed mainly of Janggi and Beomgokri groups of Miocene age in ascending order rested on the upper Silla system, Balkuksa granite and volcanic rocks of upper Cretaceous age as base. 2) Janggi group is composed in ascending order of Janggi conglomerate, Nultaeri rhyolitic tuff, Keumkwangdong shale, two beds of lignite-bearing formations which consist of alternation of conglomerate, sandstone and mudstone, and andesitic, rhyolitic, and basaltic tuff beds. 3) Beomgokri group is mainly composed of andesitic to rhyolitic tuff interlayered by conglomerate and tuffaceous sandstone. In the areas around boundary between North-and South Kyeongsang-do is distributed Haseori farmation which is composed of conglomerate, sandstone, mudstone and andesitic to rhyolitic tuff, and which is correlated to Eoilri formation of Janggi group. 4) Clay deposits of the area are interbedded in Eoilri, Haseori, Nultaeri tuff, Keumkwangdong shale, upper and lower horizon of the lower lignite-bearing seam, and Keumori rhyolitic tuff formations of Janggi group; and are genetically classi.fied into four categories, that is, i) those derived from volcanic ash beds(Haseori and Daeanri deposits), ii) those of secondary residual type from rhyolitic tuff beds(Seokupri deposits), iii) Clay beds above and beneath the lignite seams, (Janggi and Keumkwangdong deposits), and iv) those derived from rhyolitic tuff beds(Sangjeong and Tonghae deposits). 5) Mineral constituents of clay deposits are, according to X-ray diffraction, montmorillonite accompanied in different degree by cristobalite, plagioclase, quartz, stilbite, and halloysite in rare occasion. The clays are grouped according to mineral composition into four types; i) those consist mostly of montmorillonite, ii) those composed of montmorillonite and cristobalite, iii) those composed of montmorillonite and plagioclase, and iv) those composed of montmorillonite, plagioclase and quartz. 6) Clays interbedded in Haseori formation and vicinity of lignite seams belong to the first type, are of good quality and derived either from volcanic ash bed, or primary clay beds near lignite seams. Clays belonged to other types are derived from weathering of rhyolitic tuff formations and their quality varies depending upon original composition and degree of weathering. Few clays in secondary residual type contain small amount of halloysite. 7) Judging from analytical data, content of silica($SiO_2$) varies proportionally with content of cristobalite, and alumina($Al_2O_3$) content does not vary with that of plagioclase, but increases in the sedimentary bedded type of deposits. 8) It is unknown whether or not these days could be upgraded by beneficiation since no grain size of these impurities nor beneficiation test had been studied. 9) Clay beds derived from valcanic ash layers or sedimentary layers at the vicinity of lignite seams are thin in thickness and of small, discontinueous lenticular shape, although they are of good quality; and those derived from rhyolitic tuff formations or residual type from tuff are irregular in both occurrence and quality. It is, therefore, not only very difficult but also meaningless to calculate its reserve, and reserve estimation, even if done, will greatly be deviated from practically minable one. Consequently, way of discovery and exploitation of clay deposits in the area under consideration is to check the geologically favorable areas whenever needed.

  • PDF

The Mode of Occurrence and Composing Minerals of Petrified Woods from the Tertiary Janggi Group of Pohang Basin in Korea (포항 분지의 제3기 장기층군에서 산출된 규화목의 산출상태와 구성광물)

  • Kim, Jong-Heon
    • Journal of the Korean earth science society
    • /
    • v.29 no.7
    • /
    • pp.531-538
    • /
    • 2008
  • The mode of occurrence of petrified woods from the Tertiary strata of Pohang Basin in Kyeongsangbug-do suggests that the petrified woods are all allochthonous fossils. Petrified woods as well as various types of wood fossils such as carbonized woods and charcoal woods were found. However, some lignified organic remains are rarely found in the bark part of petrified woods. X-ray diffraction analysis showed three types of minerals including Opal-CT, Opal-C, and quartz+cristobalite. The presence of these minerals indicates that silicification occurred under the low temperature. The tuffs are considered to be main source of supply of silica. Analysis of the kind of composing minerals and the condition of tissue preservation can predict that silicification is mainly occurred by replacement.

Mineralogy and Genesis of Bentonites from the Tertiary Formations in Geumgwangdong Area, Korea (제(第)3기층(紀層)에 부존(賦存)하는 점토광물(粘土鑛物)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究))

  • Kim, Soo Jin;Noh, Jin Hwan;Yu, Jae Young
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.399-410
    • /
    • 1985
  • Bentonites from the Janggi Group of the Lower Miocene age from the Geumgwangdong area, Korea, have been studied for mineralogical and genetic characterization. The Janggi Group is subdivided, in ascending order, into the Janggi Conglomerate, the Nuldaeri Tuff, the Geumgwangdong Shale, the Lower Coal-bearing Formation, the Basaltic Tuff, and the Upper Coalbearing Formation. Bentonites occur as thin or thick beds in all sedimentary units of the Janggi Group, except for the Janggi Conglomerate. Significant bentonite deposits are found in the Nuldaeri Tuff, the Lower Coal-bearing Formation and the Basaltic Tuff. Bentonites consist mainly of smectite (mainly montmorillonite), with minor quartz, cristobalite, opal-CT and feldspar. Occasionally, kaolinite, clinoptilolite or gypsum is associated with bentonites. Bentonites were studied by the methods of petrographic microscopy, X-ray diffraction, thermal analysis (DT A and TG), infrared absorption spectroscopic analysis, SEM, intercalation reaction, and chemical analysis. Smectites commonly occur as irregular boxwork-like masses with characteristic curled thin edges, but occasionally as smoothly curved to nearly flat thin flakes. Most of smectites have layer charge of 0.25-0.42, indicating typical montmorillonite. Crystal-chemical relations suggest that Fe is the dominant substituent for Al in the octahedral layer and there are generally no significant substituents for Si in the tetrahedral layer. Ca is the dominant interlayer cation in montmorillonite. Therefore, montmorillonite from the study area is dioctahedral Ca-montmorillonite. Occurrence and fabrics of bentonites suggest that smectites as well as cristobalite, opal-CT and zeolites have been formed diagenetically from tuffaceous materials. The precursor of smectites is trachytic or basaltic tuff. Smectites derived from the former contain relatively more $Al_2O$ a and less $Fe_2O_3$ than those from the latter.

  • PDF

Occurrence of zeolite in the Tertiary Sediments (삼기층(三紀層) 퇴적암(堆積岩) 중(中) 비석(沸石)의 산출상태(産出狀態))

  • Kim, Jong-hwan;Moon, Hee-Soo
    • Economic and Environmental Geology
    • /
    • v.11 no.2
    • /
    • pp.59-68
    • /
    • 1978
  • Of more than 30 varieties of zeolite group minerals, 7 varieties, mordenite, clinoptilolite, natrolite laumontite, stilbite, stellerite and chabazite are identified in Korea, whereas mordenite and clinoptilolite occur in Miocene sediments of small Yonil tertiary basin, east coast of Korea. The basin consists of three separate groups of sediments called Janggi, Gampo and Haseo, which are not correlated stratigraphyically yet. Zeolite occurs alternating with montmorillonite layers in Nuldaeri, Yongdongri and Haseori tuffs of Jahanggi, Gampo and Haseo Groups respectively. Zeolite was formed by diagenesis. of acidic volcanic tuffs.

  • PDF

Mineralization Environments and Evaluation of Resources Potentials for the Absorbent-functional Mineral Resources Occurred in the Coal-bearing Formation of the Janggi Group (장기층군의 함탄층에서 산출되는 흡착기능성 광물 자원의 부존 환경 및 자원잠재성 평가)

  • Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.3 s.49
    • /
    • pp.197-207
    • /
    • 2006
  • In the coal-bearing formations of the Janggi Group, which are reported as typical clastic sediments, several beds of volcaniclastic rocks are actually found in the Yeongil area. The coal-bearing formations generally exhibit alternating lithologic characteristics of pyroclastic and epiclastic sedimentary facies. Tuff and tuffaceous sandstone rich in pumice fragments are characteristic in the coal-bearing fermations. Diagenetic minerals found in the pyroclastic rocks of the upper and lower coal-bearing formations are montmorillonite, clinoptilolite, opal-CT, and quartz. Several tuffaceous beds correspond to the low-grade ores of zeolites and bentonite, and moreover, these ores mostly occur as thin beds less than 1 m in thickness. Thus, the potential of altered tuffaceous rocks as the resources typical of zeolite and bentonite seems to be low. However, based on mineral composition and CEC determinations, it can be evaluated that these tuffaceous rocks mostly have the promising potential for utilization as the absorbent-functional mineral resources such as acid clays, if these low-grade ores plus adjacent tuffaceous rocks are collectively exploited.

Discussion on the Metasequoia Fosslis from the Miocene Keumkwandong Formation of the Janggi Group, Korea (포항분지의 마이오세 장기층군의 금광동층에서 산출된 메타세콰이아(Metasequoia) 화석에 대한 고찰)

  • Kim, Jong-Heon;Choi, Seung-Il
    • Journal of the Korean earth science society
    • /
    • v.29 no.4
    • /
    • pp.319-327
    • /
    • 2008
  • A paleobotanical study of the Metasequoia has been carried out from the Miocene Keumkwangdong Formation of the non-marine Janggi Group in the Pohang Basin. As a result of this study, deciduous leafy shoots mostly belong to a single species of Metasequoia occidentalis. This species is characterized by its opposite leaves with decurrent base, and by its presence of scale leaf at base of petiole. This species is common in the Korean Tertiary floras in Miocene age, yet it has not been recorded in the Korean Peninsula after Miocene. Based on the distribution and ecology of extant Metasequoia. it is considered that the Metasequoia might have flourished in the fluvial plains as swamp forest.

Occurrence and Cenesis of Perlite from the Beomgockri Group in Janggi Area (장기지역 범곡리층군에 부존되는 진주암의 산출상태와 생성관계)

  • Noh Jin Hwan;Hong Jin-Sung
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.4 s.46
    • /
    • pp.277-288
    • /
    • 2005
  • Perlite, a hydrated volcanic glass, occurs mainly as a bed-like body, and is distributed intermittently along the unconformity surface between the Beomgockri Group and its lower formations, viz. Janggi Group. The perlite is intimately associated with surrounding pumiceous welded tuff and rhyodacites in space and time. Compared to the typical perlite, the perlite is rather silica-poor and impure, and thus, includes lots of phenocrysts and rock fragments. Nearly the perlite is compositionally rather close to a pitchstone than a perlite in water contents. Petrographic comparison between perlite and associated volcanic to volcaniclastic rocks indicates that pumiceous welded tuff and rhyodacite seem to be Protolith of the Perlite. A Zr/$TiO_{2}$-Nb/Y diagram and field occurrence of perlite and their protolithic rocks also conforms the above interpretation. Kn addition, remnant vesicles in perlite strongly reflect that the precursor of perlitic glass appeared to be pumice fragment as well as volcanic glass. The perlite was diagenetically formed by way of a pervasive water-rock interaction at the deposition of the Manghaesan Formation in lacustrine environment. During perlitization, $SiO_{2}$ and alkali tend to be consistently depleted. Preexisting system of the Beomgockri Group based on the perlite formation should be corrected, because the perlite was formed diagenetically without lateral persistence in its occurrence.