• Title/Summary/Keyword: Jamming signals

Search Result 151, Processing Time 0.024 seconds

A Spoofing Detection Scheme Based on Elevation Masked-Relative Received Power in GPS Receivers using Multi-band Array Antenna

  • Junwoo Jung;Hyunhee Won;Sungyeol Park;Haengik Kang;Seungbok Kwon;Byeongjin Yu;Seungwoo Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.101-111
    • /
    • 2023
  • Many spoofing detection studies have been conducted to cope with the most difficult types of deception among various disturbances of GPS, such as jamming, spoofing, and meaconing. In this paper, we propose a spoofing detection scheme based on elevation masked-relative received power between GPS L1 and L2 signals in a system using a multi-band array antenna. The proposed scheme focuses on enabling spoofing to be normally detected and minimizes the possibility of false detection in an environment where false alarms may occur due to pattern distortion among elements of an array antenna. The pattern distortion weakens the GPS signal strength at low elevation. It becomes confusing to detect a spoofing signal based on the relative power difference between GPS L1 and L2, especially when GPS L2 has weak signal strength. We propose design parameters for the relative power threshold including beamforming gain, the minimum received power difference between L1 and L2, and the patch antenna gain difference between L1 and L2. In addition, in order to eliminate the weak signal strength of GPS L2 in the spoofing detection process, we propose a rotation matrix that sets the elevation mask based on platform coordinates. Array antennas generally do not have high usefulness in commercial areas where receivers are operated alone, but are considered essential in military areas where GPS receivers are used together with signal processing for beamforming in the direction of GPS satellites. Through laboratory and live sky tests using the device under test, the proposed scheme with an elevation mask detects spoofing signals well and reduces the probability of false detection relative to that without the elevation mask.

Phase Jitter Analysis of Overlapped Signals for All-to-All TWSTFT Operation

  • Juhyun Lee;Ju-Ik Oh;Joon Hyo Rhee;Gyeong Won Choi;Young Kyu Lee;Jong Koo Lee;Sung-hoon Yang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.245-255
    • /
    • 2023
  • Time comparison techniques are necessary for generating and keeping Coordinated Universal Time (UTC) and distributing standard time clocks. Global Navigation Satellite System (GNSS) Common View, GNSS All-in-View, Two-Way Satellite Time and Frequency Transfer (TWSTFT), Very Long Baseline Interferometry (VLBI), optical fiber, and Network Time Protocol (NTP) based methods have been used for time comparison. In these methods, GNSS based time comparison techniques are widely used for time synchronization in critical national infrastructures and in common areas of application such as finance, military, and wireless communication. However, GNSS-based time comparison techniques are vulnerable to jamming or interference environments and it is difficult to respond to GNSS signal disconnection according to the international situation. In response, in this paper, Code-Division Multiple Access (CDMA) based All-to-All TWSTFT operation method is proposed. A software-based simulation platform also was designed for performance analysis in multi-TWSTFT signal environments. Furthermore, code and carrier measurement jitters were calculated in multi-signal environments using the designed simulation platform. By using the technique proposed in this paper, it is anticipated that the TWSTFT-based time comparison method will be used in various fields and satisfy high-performance requirements such as those of a GNSS master station and power plant network reference station.

Analysis and Demonstration of GPS Spoofing Attack: Based on Commercial Drones (GPS 스푸핑 공격 취약점 분석 및 실증: 상용 드론을 대상으로)

  • Jinseo Yun;Minjae Kim;Kyungroul Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.431-437
    • /
    • 2024
  • Drones in the contemporary landscape have transcended their initial public utility, expanding into various industries and making significant inroads into the private sector. The majority of commercially available drones are presently equipped with GPS receivers to relay location signals from artificial satellites, aiming to inform users about the drone's whereabouts. However, a notable drawback arises from the considerable distance over which these location signals travel, resulting in a weakened signal intensity. This limitation introduces vulnerabilities, allowing for the possibility of location manipulation and jamming attacks if the drone receives a stronger signal than the intended location signal from satellites. Thus, this paper focuses on the safety assessment of drones relying on GPS-based location acquisition and addresses potential vulnerabilities in wireless communication scenarios. Targeting commercial drones, the paper analyzes and empirically demonstrates the feasibility of GPS spoofing attacks. The outcomes of this study are anticipated to serve as foundational experiments for conducting more realistic vulnerability analysis and safety evaluations.

Anti-interference Methods using Vector-based GPS Receiver Mode

  • Viet, Hoan Nguyen;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.545-557
    • /
    • 2018
  • The Global Positioning System (GPS) has become popular and widely used in many fields from military to civilian applications. However, GPS signals are suffered from interference due to its weak signal over wireless channel. There are many types of interference, such as jamming, blocking multipath, and spoofing, which can mislead the operation of GPS receiver. In this paper, vector-based tracking loop model with integrity check is proposed to detect and mitigate the harmful effect of interference on GPS receiver operation. The suggested methods are implemented in the tracking loop of GPS receiver. As a first method, integrity check with carrier-to-noise ratio (C/No) monitoring technique is applied to detect the presence of interference and prevent contaminated channels out of tracking channels to calculate position. As a second method, a vector-based tracking loop using Extended Kalman Filter with adaptive noise covariance according to C/No monitoring results. The proposed methods have been implemented on simulated dataset. The results demonstrates that the suggested methods significantly mitigate interference of Additive White Gaussian Noise (AWGN) and improve position calculation by 44%.

A Survey of Security Mechanisms with Direct Sequence Spread Spectrum Signals

  • Kang, Taeho;Li, Xiang;Yu, Chansu;Kim, Jong
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.3
    • /
    • pp.187-197
    • /
    • 2013
  • Security has long been a challenging problem in wireless networks, mainly due to its broadcast nature of communication. This opens up simple yet effective measures to thwart useful communications between legitimate radios. Spread spectrum technologies, such as direct sequence spread spectrum (DSSS), have been developed as effective countermeasures against, for example, jamming attacks. This paper surveys previous research on securing a DSSS channel even further, using physical layer attributes-keyless DSSS mechanisms, and watermarked DSSS (WDSSS) schemes. The former has been motivated by the fact that it is still an open question to establish and share the secret spread sequence between the transmitter and the receiver without being noticed by adversaries. The basic idea of the latter is to exploit the redundancy inherent in DSSS's spreading process to embed watermark information. It can be considered a counter measure (authentication) for an intelligent attacker who obtains the spread sequence to generate fake messages. This paper also presents and evaluates an adaptive DSSS scheme that takes both jam resistance and communication efficiency into account.

Prediction of eLoran Positioning Accuracy with Locating New Transmitter

  • Han, Younghoon;Park, Sang-Hyun;Seo, Ki-Yeol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.2
    • /
    • pp.53-57
    • /
    • 2017
  • eLoran refers to a terrestrial navigation system using high-power low-frequency signals. Thus, it can be regarded as a positioning, navigation and timing (PNT) system to back up a global navigation satellite system (GNSS) or an alternative to GNSS. South Korea is vulnerable to interference such as GNSS jamming in particular. Therefore, South Korea has made an effort to develop an independent navigation system through eLoran system. More particularly, an eLoran testbed has been developed to be used in the northwest sea area and research on applicability of eLoran in South Korea has been underway. The present study analyzes expected performance of eLoran according to locations of newly built eLoran transmitting stations as part of the eLoran testbed research. The performance of eLoran is analyzed in terms of horizontal position accuracy, and horizontal dilution of precision (HDOP) information was used since it affects accuracy significantly. The target service areas of the eLoran testbed are Incheon and Pyeongtaek Ports, and the required target performance is positioning accuracy of 20 m position within 30 km coverage of the target service area.

Adaptive Nulling Algorithm for Null Synthesis on the Moving Jammer Environment (이동형 재밍환경에서 널 합성을 위한 적응형 널링 알고리즘)

  • Seo, Jongwoo;Park, Dongchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.8
    • /
    • pp.676-683
    • /
    • 2016
  • In this paper, an adaptive nulling algorithm which can be used to form nulls in the direction of jammer or interference signals in array antennas of single port system is proposed. The proposed adaptive algorithm does not require a priori knowledge of the incoming signal direction and can be applied to the partially adaptive arrays. This algorithm is the combination of the PSO(Particle Swam Optimization) algorithm and the gradient-based perturbation adaptive algorithm, which shows stable nulling performance adaptively even on the moving jammer environment where the incident direction of the interference signal is changing with time.

A Study on the Optimum Weight Vector of Linearly Constrained Conditions (선형 제한 조건의 최적 가중 벡터에 대한 연구)

  • Shin, Ho-Sub
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.5
    • /
    • pp.101-107
    • /
    • 2011
  • The optimum weight vector is studied to remove interference and jamming signals in adaptive array antenna system. The optimum weight vector is calculated to apply a minimum variance algorithm and cost function in linearly constrained conditions, and accurately estimates target's signal. Adaptive array antenna system is the system which improves signal to noise ratio(SNR) and decreases interference and jammer power. Adaptive array antenna system delays at tap output of antenna array element. Each tap finally makes the complex signal of one in multiplier complex weight. In order to obtain optimum's weight calculation, optimum weight vector is used in this paper. After simulation, resolution is increased below $3^{\circ}$, and sidelobe is decreased about 10 dB.

Radar Return Signal Simulation Equipment Using MC-DDS (Multi-Channel Direct Digital Synthesis) (다채널 직접 디지털 합성을 이용한 레이더 반사 신호 모의 장치)

  • Roh, Ji-Eun;Yang, Jin-Mo;Yoo, Gyung-Joo;Gu, Young-Suk;Lee, Sang-Hwa;Song, Sung-Chan;Lee, Hee-Young;Choi, Byung-Gwan;Lee, Min-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.966-980
    • /
    • 2011
  • Radar receiving echo signal provides target information - range, velocity and position by signal magnitude and Doppler shift, which are determined by target reflection characteristics and target maneuver. Target angle error is extracted from the magnitude ratio of difference channel to sum channel. In this paper, we introduce a radar Return Signal Simulation Equipment(RSSE) which is implemented for the purpose of performance analysis and evaluation of phased array multi-function radar(MFR). It generates multi-target environment with jamming signals using MC-DDS (Multi-Channel Direct Digital Synthesis), and has scalability by using the efficient hardware configuration. The performance of the developed RSSE has been evaluated under various test environments. Especially, we proved that required target detection performance is achieved by RSP(Radar Signal Processor) interfaced RSSE configuration.