• Title/Summary/Keyword: Jamming Pattern

Search Result 33, Processing Time 0.022 seconds

Design of a Compact Antenna Array for Satellite Navigation System Using Hybrid Matching Network

  • Lee, Juneseok;Cho, Jeahoon;Ha, Sang-Gyu;Choo, Hosung;Jung, Kyung-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2045-2049
    • /
    • 2018
  • An antenna arrays for a satellite navigation systems require more antenna elements to mitigate multiple jamming signals. In order to maintain the small array size while increasing the number of antenna elements, miniaturization technique is essential for antenna design. In this work, an electrically small circular microstrip patch antenna with a 3 dB hybrid coupler is designed as an element antenna, where the 3 dB hybrid coupler can yield the circularly polarized radiation characteristic. The miniaturized element antenna typically has too large capacitance in GPS L1 and GLONASS G1 bands, making it difficult to match with a single stand-alone non-Foster matching circuit (NFMC) in a stable state. Therefore, we propose a new matching technique, referred to as the hybrid matching method, which consists of a NFMC and a passive circuit. This passive tuning circuit manages reactance of antenna elements at an appropriate capacitance without a pole in the operating frequency range. The antenna array is fabricated, and the measured results show a reflection coefficient of less than -10 dB and an isolation of greater than 50 dB. In addition, peak gain of the proposed antenna is increased by 22.3 dB compared to the antenna without the hybrid matching network.

Design on the large section of station tunnel under shallow overburden (저토피고 대단면 정거장터널의 설계)

  • Jeong, Yun-Young;Choi, Hae-Joon;Kim, Byung-Ju;Yu, Bong-Won;Kim, Yong-Il;Oh, Sung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.171-182
    • /
    • 2007
  • For minimizing the effect on the focus of civil traffic and environment conditions related to the excavation at the traffic jamming points, an underground station tunnel was planned with 35.5 m in length and bigger area than $200\;m^2$ in sedimentary rock mass. It faced the case that the overburden was just under 13 m. Not based on a pattern design but on the case histories of similar projects and arching effect, the design of large section tunnel under shallow overburden was investigated on three design subjects which are shape effect on the section area, application method of support pressure, and supporting and tunnel safety. According to the mechanical effect from section shape, a basic design and a preliminary design was obtained, and then supporting method of large section was planned by the supporting of NATM and a pipe roof method for subsidence prevention and mechanical stability. From the comparative study between both designs, it was found that the basic design was suitable and acceptable for the steel alignment of tunnel lining, safety and the design parameter restricted by the limit considered as partition of the excavation facilities. Through the analysis result of preliminary design showing the mechanical stability without stress concentration in tunnel arch level, it also was induced that shape effect of the large section area and yielding load obtained from deformation zone in the surrounding rock mass of tunnel have to be considered as major topics for the further development of design technique on the large section tunnel.

  • PDF

Development of Wide-Band Planar Active Array Antenna System for Electronic Warfare (전자전용 광대역 평면형 능동위상배열 안테나 시스템 개발)

  • Kim, Jae-Duk;Cho, Sang-Wang;Choi, Sam Yeul;Kim, Doo Hwan;Park, Heui Jun;Kim, Dong Hee;Lee, Wang Yong;Kim, In Seon;Lee, Chang Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.6
    • /
    • pp.467-478
    • /
    • 2019
  • This paper describes the development and measurement results of a wide-band planar active phase array antenna system for an electronic warfare jamming transmitter. The system is designed as an $8{\times}8$ triangular lattice array using a $45^{\circ}$ slant wide-band antenna. The 64-element transmission channel is composed of a wide-band gallium nitride(GaN) solid state power amplifier and a gallium arsenide(GaAs) multi-function core chip(MFC). Each GaAs MFC includes a true-time delay circuit to avoid a wide-band beam squint, a digital attenuator, and a GaAs drive amplifier to electronically steer the transmitted beam over a ${\pm}45^{\circ}$ azimuth angle and ${\pm}25^{\circ}$ elevation angle scan. Measurement of the transmitted beam pattern is conducted using a near-field measurement facility. The EIRP of the designed system, which is 9.8 dB more than the target EIRP performance(P), and the ${\pm}45^{\circ}$ azimuth and ${\pm}25^{\circ}$ elevation beam steering fulfill the desired specifications.