Journal of the Korea Society of Computer and Information
/
v.21
no.11
/
pp.121-126
/
2016
In recommender systems based on collaborative filtering, measuring similarity is very critical for determining the range of recommenders. Data sparsity problem is fundamental in collaborative filtering systems, which is partly solved by Jaccard coefficient combined with traditional similarity measures. This study proposes a new coefficient for improving performance of Jaccard coefficient by compensating for its drawbacks. We conducted experiments using datasets of various characteristics for performance analysis. As a result of comparison between the proposed and the similarity metric of Pearson correlation widely used up to date, it is found that the two metrics yielded competitive performance on a dense dataset while the proposed showed much better performance on a sparser dataset. Also, the result of comparing the proposed with Jaccard coefficient showed that the proposed yielded far better performance as the dataset is denser. Overall, the proposed coefficient demonstrated the best prediction and recommendation performance among the experimented metrics.
The Journal of Korean Association of Computer Education
/
v.19
no.4
/
pp.59-66
/
2016
It has been studied to reflect the number of co-rated items for solving data sparsity problem in collaborative filtering systems. A well-known method of Jaccard index allowed performance improvement, when combined with previous similarity measures. However, the degree of performance improvement when combined with existing similarity measures in various data environments are seldom analyzed, which is the objective of this study. Jaccard index as a sole similarity measure yielded much higher prediction quality than traditional measures and very high recommendation quality in a sparse dataset. In general, previous similarity measures combined with Jaccard index improved performance regardless of dataset characteristics. Especially, cosine similarity achieved the highest improvement in sparse datasets, while similarity of Mean Squared Difference degraded prediction quality in denser sets. Therefore, one needs to consider characteristics of data environment and similarity measures before combining Jaccard index for similarity use.
Journal of the Korea Society of Computer and Information
/
v.26
no.5
/
pp.47-53
/
2021
Sparse ratings data hinder reliable similarity computation between users, which degrades the performance of memory-based collaborative filtering techniques for recommender systems. Many works in the literature have been developed for solving this data sparsity problem, where the most simple and representative ones are the methods of utilizing Jaccard index. This index reflects the number of commonly rated items between two users and is mostly integrated into traditional similarity measures to compute similarity more accurately between the users. However, such integration is very straightforward with no consideration of the degree of data sparsity. This study suggests a novel idea of applying different similarity measures depending on the numeric value of Jaccard index between two users. Performance experiments are conducted to obtain optimal values of the parameters used by the proposed method and evaluate it in comparison with other relevant methods. As a result, the proposed demonstrates the best and comparable performance in prediction and recommendation accuracies.
Yoo, Jeong Do;Kim, Taekyu;Kim, In-sung;Kim, Huy Kang
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.2
/
pp.347-363
/
2019
Malware has its own unique behavior characteristics, like DNA for living things. To respond APT (Advanced Persistent Threat) attacks in advance, it needs to extract behavioral characteristics from malware. To this end, it needs to do classification for each malware based on its behavioral similarity. In this paper, various similarity of Windows malware is estimated; and based on these similarity values, malware's family is predicted. The similarity measures used in this paper are as follows: 'TF-IDF cosine similarity', 'Nilsimsa similarity', 'malware function cosine similarity' and 'Jaccard similarity'. As a result, we find the prediction rate for each similarity measure is widely different. Although, there is no similarity measure which can be applied to malware classification with high accuracy, this result can be helpful to select a similarity measure to classify specific malware family.
Journal of the Korea Society of Computer and Information
/
v.28
no.10
/
pp.163-170
/
2023
The user-based collaborative filtering technique, one of the implementation methods of the recommendation system, recommends the preferred items of neighboring users based on the calculations of neighboring users with similar rating histories. However, it fundamentally has a data scarcity problem in which the quality of recommendations is significantly reduced when there is little common rating history. To solve this problem, many existing studies have proposed various methods of combining Jaccard index with a similarity measure. In this study, we introduce a time-aware concept to Jaccard index and propose a method of weighting common items with different weights depending on the rating time. As a result of conducting experiments using various performance metrics and time intervals, it is confirmed that the proposed method showed the best performance compared to the original Jaccard index at most metrics, and that the optimal time interval differs depending on the type of performance metric.
Journal of the Korean Society for information Management
/
v.21
no.1
/
pp.93-117
/
2004
This study is to develop a hierarchic clustering model fur document classification and browsing in OPAC systems. Two automatic indexing techniques (with and without controlled terms), two term weighting methods (based on term frequency and binary weight), five similarity coefficients (Dice, Jaccard, Pearson, Cosine, and Squared Euclidean). and three hierarchic clustering algorithms (Between Average Linkage, Within Average Linkage, and Complete Linkage method) were tested on the document collection of 175 books and theses on library and information science. The best document clusters resulted from the Between Average Linkage or Complete Linkage method with Jaccard or Dice coefficient on the automatic indexing with controlled terms in binary vector. The clusters from Between Average Linkage with Jaccard has more likely decimal classification structure.
The purpose of the study was to assess and compare the diversity of plant species (trees, shrubs, herbs) of natural forest and plantations. A total of 52 plant species were recorded in the natural forest, of which 16 were trees, 15 were shrubs and 21 were herbs. On the contrary, 31 species of plants including 11 trees, 8 shrubs and 12 herbs were identified in plantation forest. Shannon-Wiener diversity index were 2.70, 2.72 and 3.12 for trees, shrubs and herbs respectively in the natural forest. However, it was 2.35 for tree species, 2.31 for shrub species and 2.81 for herb species in the plantation forest. Jaccard's similarity index showed that 71% species of trees, 44% species of shrubs and 43% species of herbs were same in plantations and natural forest.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.699-700
/
2023
최근 국내 기업에서는 블라인트 테스트나 포트폴리오와 같은 자료를 활용하여 채용하는 추세이다. 지원자마다 개인의 역량이 다를 뿐만 아니라 기업에서 요구하는 기술/경험, 지원 자격, 특정 기술에 대한 경험을 요구한다. 따라서 본 논문에서는 국내 기업의 채용 공고에 기재된 지원 자격, 우대 기술, 우대 사항 등의 데이터와 지원자의 개인 역량(기술 스택, 전공 역량, 진행 프로젝트 등) 데이터를 활용하여 키워드를 추출한다. 지원자와 기업이 입력한 데이터를 통해 추출한 키워드들을 두 개의 집합으로 나눈 뒤 각각의 키워드를 할당한다. 할당받은 집합들을 비교하여 지원자의 정보가 기업의 채용 조건에 얼마나 부합하는지 계산한 후, 해당확률을 지원자에게 제공하는 방식의 시스템이다.
Journal of Korea Society of Industrial Information Systems
/
v.18
no.2
/
pp.19-25
/
2013
In this paper, we propose an approach to tracking road regions from video sequences. The proposed method segments and tracks road regions by utilizing the prior information from the result of the previous frame. For the efficiency of the system, we have a simple assumption that the road region is usually shown in the lower part of input images so that lower 60% of input images is set to the region of interest(ROI). After initial segmentation using flood-fill algorithm, we merge neighboring regions based on color similarity measure. The previous segmentation result, in which seed points for the successive frame are extracted, is used as prior information to segment the current frame. The similarity between the road region of the previous frame and that of the current frame is measured by the modified Jaccard coefficient. According to the similarity we refine and track the detected road regions. The experimental results reveal that the proposed method is effective to segment and track road regions in noisy and non-noisy environments.
Journal of the Korea Society of Computer and Information
/
v.23
no.12
/
pp.219-226
/
2018
Collaborative filtering has been most popular approach to recommend items in online recommender systems. However, collaborative filtering is known to suffer from data sparsity problem. As a simple way to overcome this problem in literature, Jaccard index has been adopted to combine with the existing similarity measures. We analyze performance of such combination in various data environments. We also find optimal weights of factors in the combination using a genetic algorithm to formulate a similarity measure. Furthermore, optimal weights are searched for each user independently, in order to reflect each user's different rating behavior. Performance of the resulting personalized similarity measure is examined using two datasets with different data characteristics. It presents overall superiority to previous measures in terms of recommendation and prediction qualities regardless of the characteristics of the data environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.