• 제목/요약/키워드: JWL model

검색결과 7건 처리시간 0.021초

JWL++ 반응속도식의 미정상수 결정을 위한 화약의 이론적 모델 (Analytic model to determine the unknown parameters of JWL++ rate equation)

  • 김보훈;여재익
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제44회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.283-286
    • /
    • 2012
  • The analytical model determining the unknown parameters of reaction rate equation which is necessary to simulate the combustion phenomena of energetic materials is proposed. The relationship between detonation velocity and size effect of energetic materials is derived from simplified JWL++ model. Theoretical model is used to investigate the combustion characteristics of certain energetic materials before running Hydrocode by pre-determination of unknown parameter, b. When b=0.8, the behavior of HANFO gunpowder is in the form of concave-up and ANFO explosives has the concave-down form in case of b=1.5. The analytical model provides efficient and highly accurate results rather than previous method which simulated the unconfined-rate-stick via the numerical means.

  • PDF

PETN 기반 복합화약의 구성방정식 파라미터 결정 및 검증 (A Parametric Study of Constitutive Relations for PETN Based Explosive)

  • 백동현;김보훈;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.462-468
    • /
    • 2017
  • KYP 모델은 화약의 폭굉 반응속도를 기술하는 압력기반모델이다. 본 연구에서는 PETN 기반 복합 화약(PBXN-301)의 KYP 모델 및 JWL EOS의 파라미터를 결정하였다. 크기효과를 얻기 위하여 반응 막대 시험을 수행하였고 2차원 하이드로다이나믹 해석 결과와 비교하였다. 해석 결과, 정성적으로 얻어진 LLNL의 구성방정식보다 KYP 모델링을 통해 도출된 파라미터가 PBXN-301 화약의 역반지름에 따른 폭굉파속을 잘 예측하는 것으로 나타났다.

  • PDF

포화된 다공성 지반의 모델링을 위한 동적해석 프로그램(MPDAP)의 이론 및 이의 검증에 괄한 연구 (A Study on the Theory and Its Verification of Dynamic Analysis Program (MPDAP) for Modelling of Saturated Multi Phase Porous Media)

  • 김광진;문홍득
    • 한국지반공학회지:지반
    • /
    • 제13권1호
    • /
    • pp.5-18
    • /
    • 1997
  • 일반적으로 포화지반의 동적거동을 정확히 예편하기 위해서는 다공성(multi-phase) 재료모델과 그 모델을 이용하는 수치해석 프로그램의 개발이 필요하다. 본 논문에서는 높은 동하중을 받는 다공질 재료의 이론적인 거동해석 연구결과와 함께 기존 MPDAP(multi-phase dynamic analysis program)에 JWL(Jones-Withins-Lee) 모델을 삽입시켜 개발한 MPDAP에 대해 다루었다. JWL모델은 기존 모델과는 달리 폭약의 종류 및 특성 등을 고려할 수 있는 모델이다. 또한 본 논문에서는 개발된 프로그램의 적합성을 조사하기 위하여 몇몇 예제에 대한 검증해석을 수행하였다. 검증결과, 단일매체 (single-phase medium)에서의 탄성구형파의 전파특성 해석의 경우 해석결과와 이론해는 거의 일치하는 결과를 나타내었고, 일차원 선형 압밀해석의 경우과잉 간극수압은 Terzaghi의 이론해와 해석된 결과가 비교적 일치하는 경향성을 보여 주었다. 또한 포화지반에서의 평면 압축파 해석의 경우도 해석결과와 이미 검증된 프로그램 또는 완전해의 해석결과는 거의 유사하게 나타나는 것을 알 수 있었다.

  • PDF

Numerical procedures for extreme impulsive loading on high strength concrete structures

  • Danielson, Kent T.;Adley, Mark D.;O'Daniel, James L.
    • Computers and Concrete
    • /
    • 제7권2호
    • /
    • pp.159-167
    • /
    • 2010
  • This paper demonstrates numerical techniques for complex large-scale modeling with microplane constitutive theories for reinforced high strength concrete, which for these applications, is defined to be around the 7000 psi (48 MPa) strength as frequently found in protective structural design. Applications involve highly impulsive loads, such as an explosive detonation or impact-penetration event. These capabilities were implemented into the authors' finite element code, ParaAble and the PRONTO 3D code from Sandia National Laboratories. All materials are explicitly modeled with eight-noded hexahedral elements. The concrete is modeled with a microplane constitutive theory, the reinforcing steel is modeled with the Johnson-Cook model, and the high explosive material is modeled with a JWL equation of state and a programmed burn model. Damage evolution, which can be used for erosion of elements and/or for post-analysis examination of damage, is extracted from the microplane predictions and computed by a modified Holmquist-Johnson-Cook approach that relates damage to levels of inelastic strain increment and pressure. Computation is performed with MPI on parallel processors. Several practical analyses demonstrate that large-scale analyses of this type can be reasonably run on large parallel computing systems.

Investigation of blasting impact on limestone of varying quality using FEA

  • Dimitraki, Lamprini S.;Christaras, Basile G.;Arampelos, Nikolas D.
    • Geomechanics and Engineering
    • /
    • 제25권2호
    • /
    • pp.111-121
    • /
    • 2021
  • Large deformation and rapid pressure propagation take place inside the rock mass under the dynamic loads caused by the explosives, on quarry faces in order to extract aggregate material. The complexity of the science of rock blasting is due to a number of factors that affect the phenomenon. However, blasting engineering computations could be facilitated by innovative software algorithms in order to determine the results of the violent explosion, since field experiments are particularly difficult to be conducted. The present research focuses on the design of a Finite Element Analysis (FEA) code, for investigating in detail the behavior of limestone under the blasting effect of Ammonium Nitrate & Fuel Oil (ANFO). Specifically, the manuscript presents the FEA models and the relevant transient analysis results, simulating the blasting process for three types of limestone, ranging from poor to very good quality. The Finite Element code was developed by applying the Jones-Wilkins-Lee (JWL) equation of state to describe the thermodynamic state of ANFO and the pressure dependent Drucker-Prager failure criterion to define the limestone plasticity behavior, under blasting induced, high rate stress. A progressive damage model was also used in order to define the stiffness degradation and destruction of the material. This paper performs a comparative analysis and quantifies the phenomena regarding pressure, stress distribution and energy balance, for three types of limestone. The ultimate goal of this research is to provide an answer for a number of scientific questions, considering various phenomena taking place during the explosion event, using advanced computational tools.

Numerical modelling of internal blast loading on a rock tunnel

  • Zaid, Mohammad;Sadique, Md. Rehan
    • Advances in Computational Design
    • /
    • 제5권4호
    • /
    • pp.417-443
    • /
    • 2020
  • Tunnels have been an integral part of human civilization. Due to complexity in its design and structure, the stability of underground structures under extreme loading conditions has utmost importance. Increased terrorism and geo-political conflicts have forced the engineers and researchers to study the response of underground structures, especially tunnels under blast loading. The present study has been carried out to seek the response of tunnel structures under blast load using the finite element technique. The tunnel has been considered in quartzite rock of northern India. The Mohr-Coulomb constitutive model has been adopted for the elastoplastic behaviour of rock. The rock model surrounding the tunnel has dimensions of 30 m x 30 m x 35 m. Both unlined and lined (concrete) tunnel has been studied. Concrete Damage Plasticity model has been considered for the concrete lining. Four different parameters (i.e., tunnel diameter, liners thickness, overburden depth and mass of explosive) have been varied to observe the behaviour under different condition. To carry out blast analysis, Coupled-Eulerian-Lagrangian (CEL) modelling has been adopted for modelling of TNT (Trinitrotoluene) and enclosed air. JWL (Jones-Wilkins-Lee) model has been considered for TNT explosive modelling. The paper concludes that deformations in lined tunnels follow a logarithmic pattern while in unlined tunnels an exponential pattern has been observed. The stability of the tunnel has increased with an increase in overburden depth in both lined and unlined tunnels. Furthermore, the tunnel lining thickness also has a significant effect on the stability of the tunnel, but in smaller diameter tunnel, the increase in tunnel lining thickness has not much significance. The deformations in the rock tunnel have been decreased with an increase in the diameter of the tunnel.

Effect of shear zone on dynamic behaviour of rock tunnel constructed in highly weathered granite

  • Zaid, Mohammad;Sadique, Md. Rehan;Alam, M. Masroor;Samanta, Manojit
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.245-259
    • /
    • 2020
  • Tunnels have become an indispensable part of metro cities. Blast resistance design of tunnel has attracted the attention of researchers due to numerous implosion event. Present paper deals with the non-linear finite element analysis of rock tunnel having shear zone subjected to internal blast loading. Abaqus Explicit schemes in finite element has been used for the simulation of internal blast event. Structural discontinuity i.e., shear zone has been assumed passing the tunnel cross-section in the vertical direction and consist of Highly Weathered Granite medium surrounding the tunnel. Mohr-Coulomb constitutive material model has been considered for modelling the Highly Weathered Granite and the shear zone material. Concrete Damage Plasticity (CDP), Johnson-Cook (J-C), Jones-Wilkins-Lee (JWL) equation of state models are used for concrete, steel reinforcement and Trinitrotoluene (TNT) simulation respectively. The Coupled-Eulerian-Lagrangian (CEL) method of modelling for TNT explosive and air inside the tunnel has been adopted in this study. The CEL method incorporates the large deformations for which the traditional finite element analysis cannot be used. Shear zone orientations of 0°, 15°, 30°, 45°, 60°, 75° and 90°, with respect to the tunnel axis are considered to see their effect. It has been concluded that 60° orientation of shear zone presents the most critical situation.