• 제목/요약/키워드: JSEG

검색결과 8건 처리시간 0.029초

영역 기반의 영상 질의를 이용한 내용 기반 영상 검색 (Content-based image retrieval using region-based image querying)

  • 김낙우;송호영;김봉태
    • 한국통신학회논문지
    • /
    • 제32권10C호
    • /
    • pp.990-999
    • /
    • 2007
  • 본 논문에서는 효과적인 영상 검색을 위한 방법으로서 JSEG 영상 분할 기법을 통한 영역 기반의 영상 인덱싱 및 검색 기법을 제안한다. JSEG은 영상을 색상 분류에 따라 양자화하고 이에 영역 윈도우를 적용시켜 J-image를 만든 다음, 세부 분할된 영역의 성장과 병합을 통하여 영상을 효과적으로 분할하는 방법이다. 제안하는 영상 검색 시스템은 JSEG에 의해 분할된 영상을 사용자에게 질의 영상으로 주고, 사용자로 하여금 분할 영상에서 관심 영역군(群)을 선택하게 한다. 그리고 나서, 사용자 질의에 의해 선택된 영역의 MBR을 구하고 이 영역의 중심을 기준으로 다중 윈도우 마스크를 생성하여 적용시킴으로써 특정 관심 영역을 중심으로 한 영상의 전역적인 특징을 추출한다. 최종적으로 추출된 특징의 성능 비교를 위한 기술자로는 누적 히스토그램을 이용하였다. 제안된 방법은 특정 영역에서의 특징과 전역 특징을 동시에 추출하여 검색에 이용함으로써 보다 빠르고 정확하게 사용자가 원하는 영상을 제공할 수 있다. 실험 결과는 영상 색인 및 검색에 있어서 제안된 방법이 영상 기반의 검색 기법과 비교하여 더 효과적임을 보여준다.

영역 분할을 이용한 얼굴 영역 검출 (Face Detection Using Region Segmentation)

  • 박선영;이재원;강병두;김종호;김상균
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.712-714
    • /
    • 2004
  • 본 논문에서는 다양한 변화에서 얼굴을 효과적으로 검출할 수 있는 방법론을 제안한다. 우리는 복잡한 배경에서 보다 효과적으로 얼굴 영역을 검출하기 위해 영역 분할 알고리즘인 JSEG를 이용하여 영역을 분할을 하게 된다. 그리고 조명 변화에 따른 간섭이 비교적 작은 YCrCb 칼라 모델을 이용하여 분할된 영역에서 후보 얼굴 영역을 찾는다. 마지막으로 보다 정확한 결과를 위하여 검출된 얼굴 후보 영역에서 눈과 눈썹을 검출하고 눈과 눈썹의 기하학적 정보를 이용해서 최종 얼굴 영역을 결정한다. 영역 분할을 이용함으로써 복잡한 배경과 다양한 조명 변화를 지닌 환경에서 다양한 얼굴 영상들을 실험한 결과 높은 정확도를 보여주었다.

  • PDF

Color Image Query Using Hierachical Search by Region of Interest with Color Indexing

  • Sombutkaew, Rattikorn;Chitsobhuk, Orachat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.810-813
    • /
    • 2004
  • Indexing and Retrieving images from large and varied collections using image content as a key is a challenging and important problem in computer vision application. In this paper, a color Content-based Image Retrieval (CBIR) system using hierarchical Region of Interest (ROI) query and indexing is presented. During indexing process, First, The ROIs on every image in the image database are extracted using a region-based image segmentation technique, The JSEG approach is selected to handle this problem in order to create color-texture regions. Then, Color features in form of histogram and correlogram are then extracted from each segmented regions. Finally, The features are stored in the database as the key to retrieve the relevant images. As in the retrieval system, users are allowed to select ROI directly over the sample or user's submission image and the query process then focuses on the content of the selected ROI in order to find those images containing similar regions from the database. The hierarchical region-of-interest query is performed to retrieve the similar images. Two-level search is exploited in this paper. In the first level, the most important regions, usually the large regions at the center of user's query, are used to retrieve images having similar regions using static search. This ensures that we can retrieve all the images having the most important regions. In the second level, all the remaining regions in user's query are used to search from all the retrieved images obtained from the first level. The experimental results using the indexing technique show good retrieval performance over a variety of image collections, also great reduction in the amount of searching time.

  • PDF

영상 분할 및 주요 특징 점을 이용한 다중 객체 검출 (Multi-Object Detection Using Image Segmentation and Salient Points)

  • 이정호;김지훈;문영식
    • 전자공학회논문지CI
    • /
    • 제45권2호
    • /
    • pp.48-55
    • /
    • 2008
  • 본 논문은 영상 분할 기법 및 특징 점 추출 기법을 이용한 객체 추출 방법과 영상 검색 방법을 제안한다. 제안하는 방법은 크게 네 단계의 과정으로 이루어져 있다. 첫 번째 단계에서는 데이터베이스 영상에 대해서 JSEG 알고리즘을 이용하여 영상을 분할한다. 두 번째 단계에서 각 분할된 영역과 질의 영상에서 대표 색상을 추출하고, 색상 히스토그램을 생성한다. 질의 영상과 데이터베이스 영상의 각 영역간의 대표 색상과 색상 히스토그램을 비교한 결과를 종합하여 객체 후보 영역을 추출한다. 영상분할 과정에서 지나치게 분할된 영역을 위해 인접해 있는 후보 영역들을 합병한다. 세 번째 단계에서는 각 후보 영역과 질의 영상에서 DoG(Difference of Gaussian) 피라미드의 극치 점으로부터 영상의 크기 변화에 일관된 중요 특징 점들을 추출한다. 추출된 특징 점들을 정합하여 질의 영상에 해당하는 객체를 검출한다. 마지막 단계에서는 질의 영상과 객체 영역이 추출된 DB 영상과의 유사도 측정을 통한 검색을 수행하며, 유사도 측정은 색상 상관도표(Color correlogram)를 사용한다. 실험 결과를 통하여 본 논문에서 제안하는 영상 검색 방법은 질의 객체 영상에 대해 영상 전체를 비교하는 것이 아니라 객체가 존재하는 영역을 추출한 후 유사도를 측정함으로써, 배경에 의한 오검색률이 감소하고, 검색 성능이 향상됨을 확인하였다.

복잡한 영상에서의 영역 분할을 이용한 얼굴 검출 (Face Detection Using Region Segmentation on Complex Image)

  • 박선영;강병두;김종호;권오화;성치영;김상균;이재원
    • 한국멀티미디어학회논문지
    • /
    • 제9권2호
    • /
    • pp.160-171
    • /
    • 2006
  • 본 논문에서는 복잡한 배경, 심한 조명 변화 등의 다양한 환경 변화에서도 얼굴을 정확히 검출하기 위하여 영역 분할을 이용한 얼굴 검출을 제안한다. 입력된 영상에서 배경요소들로, 인한 검출 오류를 줄이기 위하여 JSEG 방법을 사용하여 영상을 영역 단위로 분할한다. 분할된 각 영역에서 사전 정의된 피부색에 해당되는 픽셀들을 추출한다. 각 영역에서 추출된 픽셀들의 비율을 이용하여 얼굴 후보 영역을 결정한다. 그리고 결정된 얼굴 후보 영역에서 얼굴요소에 해당되는 눈과 눈썹이 위치 정보와 색상 정보를 이용하여 최종 얼굴 영역을 검출한다. 본 논문에서 제안한 방법을 이용하여 다양한 제약 조건을 지닌 영상들에 대하여 얼굴을 검출해본 결과, 배경이 복잡한 영상, 조명 변화가 심한 영상, 얼굴 크기가 다양한 영상, 얼굴이 다수 존재하는 영상들에서 좋은 검출 결과를 보여주었다.

  • PDF

칼라 양자화 맵의 영역 히스토그램에 기반한 조명 적응적 피부색 영역 분할 (Adaptive Skin Segmentation based on Region Histogram of Color Quantization Map)

  • 조성식;배정태;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권1호
    • /
    • pp.54-61
    • /
    • 2009
  • 피부색 정보는 비전 기반 시스템에서 인체 인식에 널리 쓰이는 중요한 정보이다. 그러나 기존의 픽셀 단위의 피부색 분할 방법은 피부색 영역 내부와 외부에 발생하는 오분할로 인해 여러 가지 피부색 관련 시스템의 인식률을 저해시키는 요인이 된다. 본 논문에서는 양자화 영역 정보로부터 프레임 간에 근접한 유사 피부색의 영역별 분할을 통한 피부색 분할 방법을 제안한다. 제안하는 방법은 피부색 영역분할을 위해 JSEG 알고리즘을 통해 영상의 칼라를 양자화하여 영역을 분할한다. 분할된 영역으로부터 근접한 유사 피부 영역의 후보를 결정하고, 각 영역의 히스토그램 비교를 통해 피부색 영역을 결정한다. 이렇게 결정된 영역으로부터 피부색 표본을 추출하여 다음 프레임을 위한 피부색 모델을 갱신한다. 성능 평가를 위해 ECHO 데이타베이스와 조명이 변화하는 환경에서 실제 촬영한 영상을 이용하여 기존 연구의 분류 방법 비교 실험을 실시하였고, 기존보다 향상된 영역 분할 및 조명 적응 성능을 보였다.

영상 특징점 추출 기반의 임베디드 객체인식 시스템 (An Embedded Object Recognition System based on SIFT Algorithm)

  • 이수현;박찬일;강철호;이혁준;이형근;정용진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.102-103
    • /
    • 2008
  • 본 논문에서는 임베디드 환경을 위한 객체인식 시스템의 구조 및 실시간 처리를 위한 객체인식기의 하드웨어설계를 제안한다. 제안된 구조는 SIFT(Scale Invariant Feature Transform)를 이용하여 사물의 특징점을 추출하고, 비교하여 객체를 인식한다. SIFT는 영상의 크기 및 회전 등의 변화에 적응이 뛰어난 알고리즘이지만, 복잡한 연산이 반복되어 연산시간이 많은 특성상 임베디드 환경에서 실시간 처리가 어렵다. 따라서 해당 알고리즘을 하프웨어로 설계하여, 임베디드 사물인식 시스템에 적용한다. 사물인식의 빠른 처리와 인식영역의 구분을 위해 JSEG 영상분할 알고리즘을 활용하며, SIFT 특징점 추출 연산과 병렬 실행이 가능하도록 SIFT와 함께 하드웨어 구조로 설계한다.

  • PDF

노이즈에 강인한 HSV 색상 모델 기반 손 윤곽 검출 시스템 (HSV Color Model based Hand Contour Detector Robust to Noise)

  • 채수환;전경구
    • 한국멀티미디어학회논문지
    • /
    • 제18권10호
    • /
    • pp.1149-1156
    • /
    • 2015
  • This paper proposes the hand contour detector which is robust to noises. Existing methods reduce noises by applying morphology to extracted edges, detect finger tips by using the center of hands, or exploit the intersection of curves from hand area candidates based on J-value segmentation(JSEG). However, these approaches are so vulnerable to noises that are prone to detect non-hand parts. We propose the noise tolerant hand contour detection method in which non-skin area noises are removed by applying skin area detection, contour detection, and a threshold value. By using the implemented system, we observed that the system was successfully able to detect hand contours.