• Title/Summary/Keyword: JNK3

Search Result 431, Processing Time 0.027 seconds

IL-12 and IL-23 Production in Toxoplasma gondii- or LPS-Treated Jurkat T Cells via PI3K and MAPK Signaling Pathways

  • Ismail, Hassan Ahmed Hassan Ahmed;Kang, Byung-Hun;Kim, Jae-Su;Lee, Jae-Hyung;Choi, In-Wook;Cha, Guang-Ho;Yuk, Jae-Min;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.6
    • /
    • pp.613-622
    • /
    • 2017
  • IL-12 and IL-23 are closely related in structure, and have been shown to play crucial roles in regulation of immune responses. However, little is known about the regulation of these cytokines in T cells. Here, we investigated the roles of PI3K and MAPK pathways in IL-12 and IL-23 production in human Jurkat T cells in response to Toxoplasma gondii and LPS. IL-12 and IL-23 production was significantly increased in T cells after stimulation with T. gondii or LPS. T. gondii and LPS increased the phosphorylation of AKT, ERK1/2, p38 MAPK, and JNK1/2 in T cells from 10 min post-stimulation, and peaked at 30-60 min. Inhibition of the PI3K pathway reduced IL-12 and IL-23 production in T. gondii-infected cells, but increased in LPS-stimulated cells. IL-12 and IL-23 production was significantly reduced by ERK1/2 and p38 MAPK inhibitors in T. gondii- and LPS-stimulated cells, but not in cells treated with a JNK1/2 inhibitor. Collectively, IL-12 and IL-23 production was positively regulated by PI3K and JNK1/2 in T. gondii-infected Jurkat cells, but negatively regulated in LPS-stimulated cells. And ERK1/2 and p38 MAPK positively regulated IL-12 and IL-23 production in Jurkat T cells. These data indicate that T. gondii and LPS induced IL-12 and IL-23 production in Jurkat T cells through the regulation of the PI3K and MAPK pathways; however, the mechanism underlying the stimulation of IL-12 and IL-23 production by T. gondii in Jurkat T cells is different from that of LPS.

PDTC Inhibits $TNF-{\alpha}-Induced$ Apoptosis in MC3T3E1 Cells

  • Chae, Han-Jung;Bae, Jee-Hyeon;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.199-205
    • /
    • 2003
  • Osteoblasts are affected by TNF-${\alpha}$ overproduction by immune cells during inflammation. It has been suggested that functional $NF-{\kappa}B$ sites are involved in TNF-${\alpha}$-induced bone resorption. Thus, we explored the effect of pyrrolidine dithiocarbamate (PDTC), which potently blocks the activation of nuclear factor $(NF-{\kappa}B)$, on the induction of TNF-${\alpha}$-induced activation of JNK/SAPK, AP-1, cytochrome c, caspase and apoptosis in MC3T3E1 osteoblasts. Pretreatment of the cells with PDTC blocked TNF-${\alpha}$-induced $NF-{\kappa}B$ activation. TNF-${\alpha}$-induced activation of AP-1, another nuclear transcription factor, was suppressed by PDTC. The activation of c-Jun N-terminal kinase, implicated in the regulation of AP-1, was also down regulated by PDTC. TNF-${\alpha}$-induced apoptosis, release of cytochrome c and subsequent activation of caspase-3 were abolished by PDTC. TNF-${\alpha}$-induced apoptosis was partially blocked by Ac-DEVD-CHO, a caspase-3 inhibitor, suggesting that caspase-3 is involved in TNF-${\alpha}$-mediated signaling through $NF-{\kappa}B$ in MC3T3E1 osteoblasts. Thus, these results demonstrate that PDTC, has an inhibitory effect on TNF-${\alpha}$-mediated activation of JNK/SAPK, AP-1, cytochrome c release and subsequent caspase-3, leading to the inhibition of apoptosis. Our study may contribute to the treatment of TNF-${\alpha}$-associated immune and inflammatory diseases such as rheumatoid arthritis and periodontal diseases.

Chiisanoside, A Lupane Triterpenoid from Acanthopanax Leaves, Stimulates Proliferation and Differentiation of Osteoblastic MC3T3-E1 Cells

  • Choi, Eun-Mi;Ding, Yan;Nguyen, Huu Tung;Park, Sang-Hyuk;Nguyen, Xuan Nhiem;Liang, Chun;Lee, Jung-Joon;Kim, Young-Ho
    • Natural Product Sciences
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • The leaves of Acanthopanax species have traditionally been used as a tonic and a sedative as well as in the treatment of rheumatism and diabetes. Chiisanoside is the major active lupane triterpenoid of Acanthopanax leaves. To investigate the bioactivities of chiisanoside, which act on bone metabolism, the effects of chiisanoside on the function of osteoblastic MC3T3-E1 cells were studied. Chiisanoside $(0.02{\sim}20\;{\mu}M)$ significantly increased the growth of MC3T3-E1 cells and caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and nodules mineralization in the cells (P < 0.05). The effect of chiisanoside (2 ${\mu}M$) in increasing ALP activity was completely prevented by the presence of tamoxifen, suggesting that the effect of chiisanoside might be partly estrogen receptor mediated. Moreover, cotreatment of p38 inhibitor SB203580 or JNK inhibitor SP600125 inhibited chiisanoside-mediated ALP upregulation, suggesting that the induction of differentiation by chiisanoside is associated with increased activation of p38 and JNK mitogen-activated protein kinases. Our data indicate that the enhancement of osteoblast function by chiisanoside may result in the prevention for osteoporosis.

Scutellaria baicalensis Georgi Extracts inhibit RANKL-induced Osteoclast Differentiation

  • Shim, Ki-Shuk;Kim, Soon-Nam;Kim, Myung-Hee;Kim, Young-Sup;Ryu, Shi-Yong;Min, Yong-Ki;Kim, Seong-Hwan
    • Natural Product Sciences
    • /
    • v.14 no.3
    • /
    • pp.182-186
    • /
    • 2008
  • Scutellaria baicalensis Georgi (SBG) is traditionally used medicinal herb that has anti-oxidant, anticancer and anti-inflammatory effects. In this study, we investigated whether the extracts of SBG have the inhibitory activity in the osteoclast differentiation by using mouse monocytes RAW264.7 cells and primary mouse bone marrow-derived macrophages (BMMs). Methanol extract (ME) from SBG was successively fractionated into methylene chloride (MF), ethylacetate (EF) and n-butanol fraction (BF). The activity assay for tartrateresistant acid phosphatase (TRAP) and Western blot analysis were employed to evaluate the osteoclasts differentiation and the activation of mitogen-activated protein (MAP) kinases, respectively. ME, MF, EF and BF significantly and dose-dependently inhibited osteoclast differentiation without the decrease of cell viability at the concentrations used in this study. In addition, ME significantly inhibited the activation of c-jun-N-terminal kinase (JNK). In conclusion, this study firstly demonstrated that ME of SBG has the potential to inhibit the osteoclast differentiation through the suppression of JNK activation partially.

XRP44X Enhances the Cytotoxic Activity of Natural Killer Cells by Activating the c-JUN N-Terminal Kinase Signaling Pathway

  • Kim, Kwang-Soo;Park, Kyung-Soon
    • Development and Reproduction
    • /
    • v.24 no.1
    • /
    • pp.53-62
    • /
    • 2020
  • Natural killer (NK) cells are innate lymphocytes that play an essential role in preventing cancer development by performing immune surveillance to eradicate abnormal cells. Since ex vivo expanded NK cells have cytotoxic activity against various cancers, including breast cancers, their clinical potential as immune-oncogenic therapeutics has been widely investigated. Here, we report that the pyrazole chemical XRP44X, an inhibitor of Ras/ERK activation of ELK3, stimulates NK-92MI cells to enhance cytotoxic activity against breast cancer cells. Under XRP44X stimulation, NK cells did not show notable apoptosis or impaired cell cycle progression. We demonstrated that XRP44X enhanced interferon gamma expression in NK-92MI cells. We also elucidated that potentiation of the cytotoxic activity of NK-92MI cells by XRP44X is induced by activation of the c-JUN N-terminal kinase (JNK) signaling pathway. Our data provide insight into the evaluation of XRP44X as an immune stimulant and that XRP44X is a potential candidate compound for the therapeutic development of NK cells.

The Experimental study of Hwagae-san on Anti-Inflammatory Effect (화개산(華蓋散)의 항염에 대한 실험적 연구)

  • No, Woon-Serb;Shin, Jo-Young;Lee, Si-Hyeong
    • Herbal Formula Science
    • /
    • v.16 no.2
    • /
    • pp.101-114
    • /
    • 2008
  • Objective : The purpose of this study was to investigate the anti-inflammatory effects of Hwagae-san extract(HGSE) on the peritoneal macrophage. Methods : To evaluate anti-inflammatory effects of HGSE, We measured cytokines(interleukin-6; IL-6, interleukin-12; IL-12, tumor necrosis factor-${\alpha}$; TNF-${\alpha}$) and nitric oxide(NO) production in lipopolysaccharide(LPS)-induced macrophages. Furthermore, We examined molecular mechanism using western blot and also LPS-induced endotoxin shock. Results : 1. HGSE did not have any cytotoxic effect in the peritoneal macrophages. 2. HGSE reduced LPS-induced IL-6, TNF-${\alpha}$, IL-12 and NO production in peritoneal macrophages. 3. HGSE inhibited the activation of extracelluar signal-regulated kinase(ERK), C-Jun NH2-terminal kinase(JNK) but not of p38, degradation of IkB-${\alpha}$ in the LPS-stimulated peritoneal macrophages. 4. HGSE inhibited the production of TNF-$\alpha$, IL-6 and IL-12 in serum after LPS injection. Conclusion : These results suggest that HGSE may inhibit the production of TNF-${\alpha}$, IL-6, and IL-12 through inhibition of ERK and JNK activation, and that HGSE may be beneficial for inflammatory diseases.

  • PDF

Anti-inflammatory Effects of Belamcanda Chinensis Water Extract (사간 물 추출물의 항염증 효과)

  • Park, Sung-Joo;Kim, Soo-Kon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.3
    • /
    • pp.410-415
    • /
    • 2010
  • The purpose of this study was to investigate the anti-inflammatory effects of aqueous extract from Belamcanda chinensis (BC) on the RAW 264.7 cells. To evaluate the anti-inflammatory effects of BC, we examined the cytokine productions including nitric oxide (NO), interleukin (IL)-1b, IL-6 and tumor necrosis factor-a (TNF-a) in lipopolysaccharide (LPS)-induced RAW 264.7 cells and also inhibitory mechanisms such as mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-kB) using Western blot. BC inhibited LPS-induced production of NO, IL-6 and TNF-a but not of IL-1b in RAW 264.7 cells. BC respectively inhibited the activation of MAPKs such as c-Jun NH2-terminal kinase (JNK) and p38 but not of extracelluar signal-regulated kinase (ERK 1/2) and NF-kB in the LPS-stimulated RAW 264.7 cells. Taken together, Our results showed that BC down-regulated LPS-induced NO, IL-6 and TNF-a productions mainly through JNK and p38 MAPK pathway.

A Comparative Study of Korean mistletoe lectin and bee venom on mechanism in inducing apoptosis of Hep G2, a liver cancer cell

  • Lim, Seong-Woo
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.158-170
    • /
    • 2018
  • Objectives: The objective of this study is Korean mistletoe lectin (Viscum album coloratum agglutinin, VCA) and bee venom (BV) to experimental prove comparative study of VCA and BV on the anti-cancer effect and mechanisms of action. Methods: In this study, it was examined in a human hepatocellular carcinoma cell line, Hep G2 cells. Cytotoxic effects of VCA and BV on Hep G2 cells were determined by 3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide (MTT) assay in vitro. VCA and BV killed Hep G2 cells in a time- and dose-dependent manner. Results: The apoptotic cell death was then confirmed by propidium iodide staining and DNA fragmentation analysis. The mechanisms of action was examined by the expression of anti-apoptotic proteins and activation of mitogen-activated protein kinases. Treatment of Hep G2 cells with VCA activated poly (ADP-ribose) polymerase-1 (PARP-1) known as a marker of apoptosis, and mitogen-activated protein kinases signaling pathways including SAPK/JNK, MAPK and p38. BV also activated PARP-1, MAPK, p38 but not JNK. The expression level of anti-apoptotic molecule, Bcl-X, was decreased by VCA treatment but not BV. Finally, the phosphorylation level of ERM proteins involved in the cytoskeleton homeostasis was decreased by both stimuli. Conclusion: We examined the involvement of kinase in VCA or BV - induced apoptosis by using kinase inhibitors. VCA-induced apoptosis was partially inhibited by in the presence.

Fermented Colostrum Whey Upregulates Aquaporin-3 Expression in, and Proliferation of, Keratinocytes via p38/c-Jun N-Terminal Kinase Activation

  • Seo, Sang-Ah;Park, Hyun-Jung;Han, Min-Gi;Lee, Ran;Kim, Ji-Soo;Park, Ji-Hoo;Lee, Won-Young;Song, Hyuk
    • Food Science of Animal Resources
    • /
    • v.41 no.5
    • /
    • pp.749-762
    • /
    • 2021
  • Colostrum, which contains various immune and growth factors, aids wound healing by promoting keratinocyte proliferation. Aquaporins (AQPs) are small, hydrophobic membrane proteins that regulate cellular water retention. However, few studies have examined the effect of processed colostrum whey on AQP-3 expression in human skin cells. Here, we investigated the effect of milk, colostrum, fermented milk, and fermented colostrum whey on AQP-3 expression in keratinocyte HaCaT cells. Concentrations of 100-400 ㎍/mL of fermented colostrum whey were found to induce HaCaT cell proliferation. AQP-3 was found to be expressed exclusively in HaCaT cells. AQP-3 expression was significantly increased in 100 ㎍/mL fermented colostrum whey-treated cells compared with that in controls. Moreover, fermented colostrum increased p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) phosphorylation, but not ERK1/2 phosphorylation. Thus, our results suggest that fermented colostrum whey increased AQP-3 expression in, and the proliferation of, keratinocytes via JNK and p38 MAPK activation.

Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions

  • Yang, Yanyan;Lee, Jongsung;Rhee, Man Hee;Yu, Tao;Baek, Kwang-Soo;Sung, Nak Yoon;Kim, Yong;Yoon, Keejung;Kim, Ji Hye;Kwak, Yi-Seong;Hong, Sungyoul;Kim, Jong-Hoon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.39 no.1
    • /
    • pp.61-68
    • /
    • 2015
  • Background: Korean Red Ginseng (KRG) is a representative traditional herbal medicine with many different pharmacological properties including anticancer, anti-atherosclerosis, anti-diabetes, and anti-inflammatory activities. Only a few studies have explored the molecular mechanism of KRG-mediated anti-inflammatory activity. Methods: We investigated the anti-inflammatory mechanisms of the protopanaxadiol saponin fraction (PPD-SF) of KRG using in vitro and in vivo inflammatory models. Results: PPD-SF dose-dependently diminished the release of inflammatory mediators [nitric oxide (NO), tumor necrosis factor-${\alpha}$, and prostaglandin $E_2$], and downregulated the mRNA expression of their corresponding genes (inducible NO synthase, tumor necrosis factor-${\alpha}$, and cyclooxygenase-2), without altering cell viability. The PPD-SF-mediated suppression of these events appeared to be regulated by a blockade of p38, c-Jun N-terminal kinase (JNK), and TANK (TRAF family member-associated NF-kappa-B activator)-binding kinase 1 (TBK1), which are linked to the activation of activating transcription factor 2 (ATF2) and interferon regulatory transcription factor 3 (IRF3). Moreover, this fraction also ameliorated HCl/ethanol/-induced gastritis via suppression of phospho-JNK2 levels. Conclusion: These results strongly suggest that the anti-inflammatory action of PPD-SF could be mediated by a reduction in the activation of p38-, JNK2-, and TANK-binding-kinase-1-linked pathways and their corresponding transcription factors (ATF2 and IRF3).