• Title/Summary/Keyword: JCN

Search Result 281, Processing Time 0.02 seconds

Impact of Trust-based Security Association and Mobility on the Delay Metric in MANET

  • Nguyen, Dang Quan;Toulgoat, Mylene;Lamont, Louise
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.105-111
    • /
    • 2016
  • Trust models in the literature of MANETs commonly assume that packets have different security requirements. Before a node forwards a packet, if the recipient's trust level does not meet the packet's requirement level, then the recipient must perform certain security association procedures, such as re-authentication. We present in this paper an analysis of the epidemic broadcast delay in such context. The network, mobility and trust models presented in this paper are quite generic and allow us to obtain the delay component induced only by the security associations along a path. Numerical results obtained by simulations also confirm the accuracy of the analysis. In particular, we can observe from both simulation's and analysis results that, for large and sparsely connected networks, the delay caused by security associations is very small compared to the total delay of a packet. This also means that parameters like network density and nodes' velocity, rather than any trust model parameter, have more impact on the overall delay.

Toward Trustworthy Social Network Services: A Robust Design of Recommender Systems

  • Noh, Giseop;Oh, Hayoung;Lee, Kyu-haeng;Kim, Chong-kwon
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.145-156
    • /
    • 2015
  • In recent years, electronic commerce and online social networks (OSNs) have experienced fast growth, and as a result, recommendation systems (RSs) have become extremely common. Accuracy and robustness are important performance indexes that characterize customized information or suggestions provided by RSs. However, nefarious users may be present, and they can distort information within the RSs by creating fake identities (Sybils). Although prior research has attempted to mitigate the negative impact of Sybils, the presence of these fake identities remains an unsolved problem. In this paper, we introduce a new weighted link analysis and influence level for RSs resistant to Sybil attacks. Our approach is validated through simulations of a broad range of attacks, and it is found to outperform other state-of-the-art recommendation methods in terms of both accuracy and robustness.

Construction of Block-LDPC Codes based on Quadratic Permutation Polynomials

  • Guan, Wu;Liang, Liping
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.157-161
    • /
    • 2015
  • A new block low-density parity-check (Block-LDPC) code based on quadratic permutation polynomials (QPPs) is proposed. The parity-check matrix of the Block-LDPC code is composed of a group of permutation submatrices that correspond to QPPs. The scheme provides a large range of implementable LDPC codes. Indeed, the most popular quasi-cyclic LDPC (QC-LDPC) codes are just a subset of this scheme. Simulation results indicate that the proposed scheme can offer similar error performance and implementation complexity as the popular QC-LDPC codes.

Virtual Direction Multicast: An Efficient Overlay Tree Construction Algorithm

  • Mercan, Suat;Yuksel, Murat
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.446-459
    • /
    • 2016
  • In this paper, we propose virtual direction multicast (VDM) for video multicast applications on peer-to-peer overlay networks. It locates the end hosts relative to each other based on a virtualized orientation scheme using real-time measurements. It builds multicast tree by connecting the nodes, which are estimated to be in the same virtual direction. By using the concept of directionality, we target to use minimal resources in the underlying network while satisfying users' quality expectations. We compare VDM against host multicast tree protocol.We simulated the protocol in a network simulator and implemented in PlanetLab. Results both from simulation and PlanetLab implementation show that our proposed technique exhibits good performance in terms of defined metrics.

Sparse Index Multiple Access for Multi-Carrier Systems with Precoding

  • Choi, Jinho
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.439-445
    • /
    • 2016
  • In this paper, we consider subcarrier-index modulation (SIM) for precoded orthogonal frequency division multiplexing (OFDM) with a few activated subcarriers per user and its generalization to multi-carrier multiple access systems. The resulting multiple access is called sparse index multiple access (SIMA). SIMA can be considered as a combination of multi-carrier code division multiple access (MC-CDMA) and SIM. Thus, SIMA is able to exploit a path diversity gain by (random) spreading over multiple carriers as MC-CDMA. To detect multiple users' signals, a low-complexity detection method is proposed by exploiting the notion of compressive sensing (CS). The derived low-complexity detection method is based on the orthogonal matching pursuit (OMP) algorithm, which is one of greedy algorithms used to estimate sparse signals in CS. From simulation results, we can observe that SIMA can perform better than MC-CDMA when the ratio of the number of users to the number of multi-carrier is low.

HEVA: Cooperative Localization using a Combined Non-Parametric Belief Propagation and Variational Message Passing Approach

  • Oikonomou-Filandras, Panagiotis-Agis;Wong, Kai-Kit
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.397-410
    • /
    • 2016
  • This paper proposes a novel cooperative localization method for distributed wireless networks in 3-dimensional (3D) global positioning system (GPS) denied environments. The proposed method, which is referred to as hybrid ellipsoidal variational algorithm (HEVA), combines the use of non-parametric belief propagation (NBP) and variational Bayes (VB) to benefit from both the use of the rich information in NBP and compact communication size of a parametric form. InHEVA, two novel filters are also employed. The first one mitigates non-line-of-sight (NLoS) time-of-arrival (ToA) messages, permitting it to work well in high noise environments with NLoS bias while the second one decreases the number of calculations. Simulation results illustrate that HEVA significantly outperforms traditional NBP methods in localization while requires only 50% of their complexity. The superiority of VB over other clustering techniques is also shown.

Development of a Gateway System for Social Network Services

  • Kwon, Dongwoo;Jung, Insik;Lee, Shinho;Kim, Hyeonwoo;Ju, Hongtaek
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.118-125
    • /
    • 2015
  • In this paper, we propose a method to reduce mobile social network services (SNSs) traffic using a mobile integrated SNS gateway (MISG) to improve network communication performance between the mobile client and SNS servers. The gateway connects the client and SNS servers using the contents adapter and the web service adapter and helps to improve communication performance using its cache engine. An integrated SNS application, the user's client, communicates with the gateway server using integrated SNS protocol. In addition, the gateway can alert the client to new SNS contents because of the broker server implemented by the message queuing telemetry transport protocol. We design and develop the modules of the gateway server and the integrated SNS application. We then measure the performance of MISG in terms of content response time and describe the result of the experiment.

Anonymity-Based Authenticated Key Agreement with Full Binding Property

  • Hwang, Jung Yeon;Eom, Sungwook;Chang, Ku-Young;Lee, Pil Joong;Nyang, DaeHun
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.190-200
    • /
    • 2016
  • In this paper, we consider some aspects of binding properties that bind an anonymous user with messages. According to whether all the messages or some part of the messages are bound with an anonymous user, the protocol is said to satisfy the full binding property or the partial binding property, respectively. We propose methods to combine binding properties and anonymity-based authenticated key agreement protocols. Our protocol with the full binding property guarantees that while no participant's identity is revealed, a participant completes a key agreement protocol confirming that all the received messages came from the other participant. Our main idea is to use an anonymous signature scheme with a signer-controlled yet partially enforced linkability. Our protocols can be modified to provide additional properties, such as revocable anonymity. We formally prove that the constructed protocols are secure.

Iterative Symbol Decoding of Variable-Length Codes with Convolutional Codes

  • Wu, Hung-Tsai;Wu, Chun-Feng;Chang, Wen-Whei
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.40-49
    • /
    • 2016
  • In this paper, we present a symbol-level iterative source-channel decoding (ISCD) algorithm for reliable transmission of variable-length codes (VLCs). Firstly, an improved source a posteriori probability (APP) decoding approach is proposed for packetized variable-length encoded Markov sources. Also proposed is a recursive implementation based on a three-dimensional joint trellis for symbol decoding of binary convolutional codes. APP channel decoding on this joint trellis is realized by modification of the Bahl-Cocke-Jelinek-Raviv algorithm and adaptation to the non-stationary VLC trellis. Simulation results indicate that the proposed ISCD scheme allows to exchange between its constituent decoders the symbol-level extrinsic information and achieves high robustness against channel noises.

Mixture Filtering Approaches to Blind Equalization Based on Estimation of Time-Varying and Multi-Path Channels

  • Lim, Jaechan
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.8-18
    • /
    • 2016
  • In this paper, we propose a number of blind equalization approaches for time-varying andmulti-path channels. The approaches employ cost reference particle filter (CRPF) as the symbol estimator, and additionally employ either least mean squares algorithm, recursive least squares algorithm, or $H{\infty}$ filter (HF) as a channel estimator such that they are jointly employed for the strategy of "Rao-Blackwellization," or equally called "mixture filtering." The novel feature of the proposed approaches is that the blind equalization is performed based on direct channel estimation with unknown noise statistics of the received signals and channel state system while the channel is not directly estimated in the conventional method, and the noise information if known in similar Kalman mixture filtering approach. Simulation results show that the proposed approaches estimate the transmitted symbols and time-varying channel very effectively, and outperform the previously proposed approach which requires the noise information in its application.