• 제목/요약/키워드: JCN

검색결과 281건 처리시간 0.017초

ATSC Digital Television Signal Detection with Spectral Correlation Density

  • Yoo, Do-Sik;Lim, Jongtae;Kang, Min-Hong
    • Journal of Communications and Networks
    • /
    • 제16권6호
    • /
    • pp.600-612
    • /
    • 2014
  • In this paper, we consider the problem of spectrum sensing for advanced television systems committee (ATSC) digital television (DTV) signal detection. To exploit the cyclostationarity of the ATSC DTV signals, we employ spectral correlation density (SCD) as the decision statistic and propose an optimal detection algorithm. The major difficulty is in obtaining the probability distribution functions of the SCD. To overcome the difficulty, we probabilistically model the pilot frequency location and employ Gaussian approximation for the SCD distribution. Then, we obtain a practically implementable detection algorithm that outperforms the industry leading systems by 2-3 dB. We also propose various techniques that greatly reduce the system complexity with performance degradation by only a few tenths of decibels. Finally, we show how robust the system is to the estimation errors of the noise power spectral density level and the probability distribution of the pilot frequency location.

A Parallel Collaborative Sphere Decoder for a MIMO Communication System

  • Koo, Jihun;Kim, Soo-Yong;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • 제16권6호
    • /
    • pp.620-626
    • /
    • 2014
  • In this paper, we propose a parallel collaborative sphere decoder with a scalable architecture promising quasi-maximum likelyhood performance with a relatively small amount of computational resources. This design offers a hardware-friendly algorithm using a modified node operation through fixing the variable complexity of the critical path caused by the sequential nature of the conventional sphere decoder (SD). It also reduces the computational complexity compared to the fixed-complexity sphere decoder (FSD) algorithm by tree pruning using collaboratively operated node operators. A Monte Carlo simulation shows that our proposed design can be implemented using only half the parallel operators compared to the approach using an ideal fully parallel scheme such as FSD, with only about a 7% increase of the normalized decoding time for MIMO dimensions of $16{\times}16$ with 16-QAM modulation.

A Fast Inter-Domain Network-based IP Mobility Scheme for Urban Areas

  • Taghizadeh, Alireza;Wan, Tat-Chee;Budiarto, Rahmat
    • Journal of Communications and Networks
    • /
    • 제16권6호
    • /
    • pp.645-655
    • /
    • 2014
  • Latency, an identified element of Internet protocol (IP) mobility protocol execution, can reduce handover performance in mobile networks. Although the performance can be improved by applying an effective network-based IP mobility scheme in place of the traditional host-based alternatives, the existing inter-domain extensions of network-based IP mobility continue to suffer from an extended handover latency. This paper proposes a new inter-domain network-based IP mobility scheme based on node movement prediction. The proposed scheme accelerates the handover by preparing the future domain of the mobile node in a proactive manner. Analytical and simulation-based evaluations confirm improved performance of the proposed scheme in terms of handover latency and packet loss compared with existing schemes.

Distributed Prevention Mechanism for Network Partitioning in Wireless Sensor Networks

  • Wang, Lili;Wu, Xiaobei
    • Journal of Communications and Networks
    • /
    • 제16권6호
    • /
    • pp.667-676
    • /
    • 2014
  • Connectivity is a crucial quality of service measure in wireless sensor networks. However, the network is always at risk of being split into several disconnected components owing to the sensor failures caused by various factors. To handle the connectivity problem, this paper introduces an in-advance mechanism to prevent network partitioning in the initial deployment phase. The approach is implemented in a distributed manner, and every node only needs to know local information of its 1-hop neighbors, which makes the approach scalable to large networks. The goal of the proposed mechanism is twofold. First, critical nodes are locally detected by the critical node detection (CND) algorithm based on the concept of maximal simplicial complex, and backups are arranged to tolerate their failures. Second, under a greedy rule, topological holes within the maximal simplicial complex as another potential risk to the network connectivity are patched step by step. Finally, we demonstrate the effectiveness of the proposed algorithm through simulation experiments.

Enhancing Network Service Survivability in Large-Scale Failure Scenarios

  • Izaddoost, Alireza;Heydari, Shahram Shah
    • Journal of Communications and Networks
    • /
    • 제16권5호
    • /
    • pp.534-547
    • /
    • 2014
  • Large-scale failures resulting from natural disasters or intentional attacks are now causing serious concerns for communication network infrastructure, as the impact of large-scale network connection disruptions may cause significant costs for service providers and subscribers. In this paper, we propose a new framework for the analysis and prevention of network service disruptions in large-scale failure scenarios. We build dynamic deterministic and probabilistic models to capture the impact of regional failures as they evolve with time. A probabilistic failure model is proposed based on wave energy behaviour. Then, we develop a novel approach for preventive protection of the network in such probabilistic large-scale failure scenarios. We show that our method significantly improves uninterrupted delivery of data in the network and reduces service disruption times in large-scale regional failure scenarios.

Power Allocation Framework for OFDMA-based Decode-and-Forward Cellular Relay Networks

  • Farazmand, Yalda;Alfa, Attahiru S.
    • Journal of Communications and Networks
    • /
    • 제16권5호
    • /
    • pp.559-567
    • /
    • 2014
  • In this paper, a framework for power allocation of downlink transmissions in orthogonal frequency division multiple access-based decode-and-forward cellular relay networks is investigated. We consider a system with a single base station communicating with multiple users assisted by multiple relays. The relays have limited power which must be divided among the users they support in order to maximize the data rate of the whole network. Advanced power allocation schemes are crucial for such networks. The optimal relay power allocation which maximizes the data rate is proposed as an upper bound, by finding the optimal power requirement for each user based on knapsack problem formulation. Then by considering the fairness, a new relay power allocation scheme, called weighted-based scheme, is proposed. Finally, an efficient power reallocation scheme is proposed to efficiently utilize the power and improve the data rate of the network. Simulation results demonstrate that the proposed power allocation schemes can significantly improve the data rate of the network compared to the traditional scheme.

Biased SNR Estimation using Pilot and Data Symbols in BPSK and QPSK Systems

  • Park, Chee-Hyun;Hong, Kwang-Seok;Nam, Sang-Won;Chang, Joon-Hyuk
    • Journal of Communications and Networks
    • /
    • 제16권6호
    • /
    • pp.583-591
    • /
    • 2014
  • In wireless communications, knowledge of the signal-to-noise ratio is required in diverse communication applications. In this paper, we derive the variance of the maximum likelihood estimator in the data-aided and non-data-aided schemes for determining the optimal shrinkage factor. The shrinkage factor is usually the constant that is multiplied by the unbiased estimate and it increases the bias slightly while considerably decreasing the variance so that the overall mean squared error decreases. The closed-form biased estimators for binary-phase-shift-keying and quadrature phase-shift-keying systems are then obtained. Simulation results show that the mean squared error of the proposed method is lower than that of the maximum likelihood method for low and moderate signal-to-noise ratio conditions.

Efficient Multicast Tree Construction in Wireless Mesh Networks

  • Nargesi, Amir-Abbas;Bag-Mohammadi, Mozafar
    • Journal of Communications and Networks
    • /
    • 제16권6호
    • /
    • pp.613-619
    • /
    • 2014
  • Multicast routing algorithms designed for wireline networks are not suitable for wireless environments since they cannot efficiently exploit the inherent characteristics of wireless networks such as the broadcast advantage. There are many routing protocols trying to use these advantages to decrease the number of required transmissions or increase the reception probability of data (e.g., opportunistic routing).Reducing the number of transmissions in a multicast tree directly decreases the bandwidth consumption and interference and increases the overall throughput of the network. In this paper, we introduce a distributed multicast routing protocol for wireless mesh networks called NCast which take into account the data delivery delay and path length when constructing the tree. Furthermore, it effectively uses wireless broadcast advantage to decrease the number of forwarding nodes dynamically when a new receiver joins the tree.Our simulation results show that NCast improves network throughput, data delivery ratio and data delivery delay in comparison with on demand multicast routing protocol. It is also comparable with multichannel multicast even though it does not use channeling technique which eliminates the interference inherently.

Joint Energy Efficiency Optimization with Nonlinear Precoding in Multi-cell Broadcast Systems

  • Gui, Xin;Lee, Kyoung-Jae;Jung, Jaehoon;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • 제18권6호
    • /
    • pp.873-883
    • /
    • 2016
  • In this paper, we focus on maximizing weighted sum energy efficiency (EE) for a multi-cell multi-user channel. In order to solve this non-convex problem, we first decompose the original problem into a sequence of parallel subproblems which can optimized separately. For each subproblem, a base station employs dirty paper coding to maximize the EE for users within a cell while regulating interference induced to other cells. Since each subproblem can be transformed to a convex multiple-access channel problem, the proposed method provides a closed-form solution for power allocation. Then, based on the derived optimal covariance matrix for each subproblem, a local optimal solution is obtained to maximize the sum EE. Finally, simulation results show that our algorithm based on non-linear precoding achieves about 20 percent performance gains over the conventional linear precoding method.

Channel Assignment, Link Scheduling, Routing, and Rate Control for Multi-Channel Wireless Mesh Networks with Directional Antennas

  • Roh, Hee-Tae;Lee, Jang-Won
    • Journal of Communications and Networks
    • /
    • 제18권6호
    • /
    • pp.884-891
    • /
    • 2016
  • The wireless mesh network (WMN) has attracted significant interests as a broadband wireless network to provide ubiquitous wireless access for broadband services. Especially with incorporating multiple orthogonal channels and multiple directional antennas into the WMN, each node can communicate with its neighbor nodes simultaneously without interference between them. However, as we allow more freedom, we need a more sophisticated algorithm to fully utilize it and developing such an algorithm is not easy in general. In this paper, we study a joint channel assignment, link scheduling, routing, and rate control problem for the WMN with multiple orthogonal channels and multiple directional antennas. This problem is inherently hard to solve, since the problem is formulated as a mixed integer nonlinear problem (MINLP). However, despite of its inherent difficulty, we develop an algorithm to solve the problem by using the generalized Benders decomposition approach [2]. The simulation results show the proposed algorithm provides the optimal solution to maximize the network utility, which is defined as the sum of utilities of all sessions.