• 제목/요약/키워드: J-weld

검색결과 320건 처리시간 0.031초

Statistical analysis of parameter estimation of a probabilistic crack initiation model for Alloy 182 weld considering right-censored data and the covariate effect

  • Park, Jae Phil;Park, Chanseok;Oh, Young-Jin;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • 제50권1호
    • /
    • pp.107-115
    • /
    • 2018
  • To ensure the structural integrity of nuclear power plants, it is essential to predict the lifetime of Alloy 182 weld, which is used for welding in nuclear reactors. The lifetime of Alloy 182 weld is directly related to the crack initiation time. Owing to the large time scatter in most crack initiation tests, a probabilistic model, such as the Weibull distribution, has mainly been adopted for prediction. However, since statistically more advanced methods than current typical methods may be applied, we suggest a statistical procedure for parameter estimation of the crack initiation time of Alloy 182 weld, considering right-censored data and the covariate effect. Furthermore, we suggest a procedure for uncertainty evaluation of the estimators based on the bootstrap method. The suggested statistical procedure can be applied not only to Alloy 182 weld but also to any material degradation data set including right-censored data with covariate effect.

점 용접점 파단의 정량적 모델-1. 파단조건식 (An Estimative Model of Spot Weld Failure-1. Failure Criteria)

  • 이태수;이형일;신수정
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.40-52
    • /
    • 1998
  • A good grasp of the failure mechanisms of resistance spot weld, widely used in joining the auto-panels, in essential to the structural/crashworthy analyses and integrity assessment of the whole auto-body. In this study, We provide an estimative model describing the failure behavior of resistance spotf weld, and apply the model to the finite element analysis of crashworthiness. First, in "Part 1-Failure Criteria", to be used for the finite element analysis of spot-welded structural panels of an auto-body, (i) a methodology for quantifying the spot weld failure and the accompanying failure criteria are presented, and (ii) the coefficients of the failure equation are determined by a munimum number of appropriate experimental tests. To achieve these, we derive the functional form of the failure envelop by limit analysis, and correlate it with the form in PAM-$CRASH^{TM}$ code, and also investigate the effect of the failure coefficients on the failure envelop form. An estimative model obtained in this Part1, as spot weld failure criteria is applied to the Macroscopic finite element analysis of autobody structural panels using PAM-$CRASH^{TM}$ code in Part 2.

  • PDF

알루미늄 판재의 전기저항가열 압출점접합공정에 있어서 핀의 높이가 접합강도에 미치는 영향에 관한 연구 (A Study on the Effect of Pin Height on Weld Strength in Extru-Rivet Spot Welding of Aluminum Plates)

  • 이성준;김태현;진인태
    • 소성∙가공
    • /
    • 제23권5호
    • /
    • pp.282-288
    • /
    • 2014
  • It is difficult to control welding variables during spot welding of non-ferrous metals like aluminum because of the low electrical resistance of the material. It has been suggested that a solid state welding process such as friction stir spot welding or extru-spot welding can be used to spot weld aluminum plates. In the extru-spot welding, there is a need to increase the weld strength by improving the shape of the welding die. The current study shows that the weld strength for an extru-spot welding can be increased by using a pin placed on the inside of the upper electrode in the welding die. In the current study, the deformed shape of the insert rivet and the stress distribution in the welding zone were analyzed by simulation. Extru-rivet spot welding experiments were performed by changing the height of pin on the inside of the upper electrode. From the experimental result, it is shown that the weld strength for an extru-rivet spot welding can be increased by adjusting the height of the pin. The optimal shape of the deformed rivet after the extru-rivet spot welding can be observed from the simulation results. The deformed shape of the insert rivet can also be controlled by the height of pin.

Effects of Hydrogen on the PWSCC Initiation Behaviours of Alloy 182 Weld in PWR Environments

  • Kim, H.-S.;Hong, J.-D.;Lee, J.;Gokul, O.S.;Jang, C.
    • Corrosion Science and Technology
    • /
    • 제14권3호
    • /
    • pp.113-119
    • /
    • 2015
  • Alloy 82/182 weld metals had been extensively used in joining the components of the PWR primary system. Unfortunately, there have been a number of incidents of cracking caused by PWSCC in Alloy 82/182 welds during the operation of PWR worldwide. To mitigate PWSCC, optimization of water-chemistry conditions, especially dissolved hydrogen (DH) and Zn contents, is considered as the most promising and effective remedial method. In this study, the PWSCC behaviours of Alloy 182 weld were investigated in simulated PWR environments with various DH content. Both in-situ and ex-situ oxide characterizations as well as PWSCC initiation tests were performed. The results showed that PWSCC crack initiation time was shortest in PWR water (DH: 30cc/kg). Also, high stress reduced crack initiation time. Oxide layer showed multi-layered structures consisted of the outer needle-like Ni-rich oxide layer, Fe-rich crystalline oxide, and inner Cr-rich inner oxide layers, which was not altered by the level of applied stress. To analyse the multi-layer structure of oxides, EIS measurement were fitted into an equivalent circuit model. Further analyses including TEM and EDS are underway to verify appropriateness of the equivalent circuit model.

X20CrMoV 12 1 강의 용접부에서의 균열진전 특성연구 (Time-dependent Crack Growth in X20CrMoV 12 1 Steel Weld joint)

  • 이남우;김광수;정용근;박종근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.322-327
    • /
    • 2000
  • This paper investigates the time-dependent crack growth in X20CrMoV 12 1 steel weld joints. Crack growth test are carried out $545^{\circ}C$ on side-grooved 1/2T CT specimens under static loads. A simulated material is produced for the intercritical HAZ, where fracture normally occurs. Constitutive properties are obtained for the simulated HAZ material as well as for the base metal and weld metal. Finite element analyses of crack growth are performed on the models with and without a HAZ layer, using the experimental crack length-time history. The inclusion of HAZ layer increase the load line velocities significantly. The crack growth rates are correlated reasonably well with $C^*$. The smallest crack size for the validity of $C^*$ is found much smaller than the ASTM crack initiation size for 1T CT specimen of creep ductile materials.

  • PDF

용접 Fume 형상 측정에 따른 용접 결합에 관한 연구 (A Study on Welding Union by Welding Fume Shape Measurement)

  • 김재열;최철준;곽남수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.35-36
    • /
    • 2006
  • In Nd:YAG laser welding, evaluation methods of welding flaw are various. But, the method due to fume shape is difficult to classification of welding flaw. The Nd:YAG laser process is known to have high speed and deep penetration capability to become one of the most advanced welding technologies. At the present time, some methods are studied for measurement of fume shape by using high-speed camera and photo diode. This paper describes the machining characteristics of SM45C carbon steel welding by use of an Nd:YAG laser. In spite of its good mechanical characteristics, SM45C carbon steel has a high carbon contents and suffers a limitation in the industrial application due to the poor welding properties. In this study, fume shape was measured by infrared thermal camera that is non-contact/non-destructive thermal measurement equipment through change of laser generating power, speed, focus. Weld was performed on bead-on method. Measurement results are compared as two equipments. Here, two results are composed of measurement results of fume quantities due to fume shape by infrared thermal camera and inspection results of weld bead include weld flaws by ultrasonic inspector.

  • PDF

차세대 분산형 고속전철용 압출재 알루미늄 합금의 마찰교반접합 (Friction Stir Welding in Extrusion Aluminum Carbody of HEMU-400X (Highspeed EMU-400km/h eXperiment))

  • 장웅성;천창근;김흥주;박인규;백진성;노양환
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.980-985
    • /
    • 2008
  • Since its invention at TWI in 1991, Friction Stir Welding (FSW) has become a major joining process in the aerospace, railway and ship building industries especially in the fabrication of aluminium alloys. In an attempt to optimize the friction stir welding process of Al alloys for extrusion Aluminium carbody of HEMU-400X (Extrusion Aluminum 6xxx series), effects of joining parameters such as tool rotating speed, plunging depth and dwelling time on the weld joints properties were evaluated. Experimental tests were carried out for butt joined Al plates. A wide range of joining conditions could be applied to join Al alloys for Extrusion Aluminum 6xxx series without defects in the weld zone except for certain welding conditions with an insufficient heat input. The microstructures of welds have dynamic-recrystallized grain similar to stir zone in FSW weld. For sound joints without defects, at the rotation speed of 700 rpm with different welding speeds, the tensile strengths of the Stir Zone(SZ) were almost the same, 80% of those of the base metal. (JIS Z 2201)

  • PDF

Cu를 함유한 HSLA-100강 용접 열영향부의 미세 조직 및 인성 (Microstructure and Toughness of Weld Heat-Affected Zone in Cu-containing HSLA-100 steel)

  • 박태원;심인옥;김영우;강정윤
    • 열처리공학회지
    • /
    • 제8권1호
    • /
    • pp.53-64
    • /
    • 1995
  • A study was made to characterize the microstructures and mechanical properties of the base metal and the heat-affected zone(HAZ) in Cu-bearing HSLA-100 steel. The Gleeble thermal/mechanical simulator was used to simulated the weld HAZ. The relationship between microstructure and toughness of HAZ was studied by impact test, O. M, SEM, TEM, and DSC. The toughness requirement of military specification value was met in all test temperatures for the base metal. The decrease of HAZ toughness comparing to base plate is ascribed to the coarsed-grain and the formation of bainite. Obliquely sectioned Charpy specimens show that secondary crack propagate easily along bainite lath. Improved toughness(240J) at HAZ of $Tp_2=950^{\circ}C$ is due to the fine grain, and reasonable toughness(160~00J) in the intercritical reheated HZA is achieved by the addition of small amount of carbon which affects the formation of "M-A". Cu precipitated during ageing for increasing the strength of base metal is dissolved during single thermal cycle to $1,350^{\circ}C$ and is precipitated little on cooling and heating during subsequent weld thermal cycle. Thus, the decrease of toughness does not occur owing to the precipitation of Cu.

  • PDF

셀프실드아크 용접금속의 확산성수소량에 미치는 용접변수의 영향 (Effects of Welding Parameters on Diffusible Hydrogen Contents in FCAW-S Weld Metal)

  • 방국수;박찬
    • 한국해양공학회지
    • /
    • 제27권5호
    • /
    • pp.77-81
    • /
    • 2013
  • The effects of the welding parameters, contact tip-to-workpiece distance (CTWD), current, and voltage on the diffusible hydrogen content in weld metal deposited by self-shielded flux cored arc welding were investigated and rationalized by comparing the amount of heat generated in the extension length of the wire. This showed that as CTWD increased from 15mm to 25mm, the amount of heat generated was increased from 71.1J to 174.8J, and the hydrogen content was decreased from 11.3mL/100g to 5.9mL/100 g. Even if little difference was observed in the amount of heat generated, the hydrogen content was increased with an increase in voltage because of the longer arc length. A regression analysis showed that the regression coefficient of voltage in self-shielded flux cored arc welding is greater than that in $CO_2$ arc welding. This implies that voltage control is more important in self-shielded flux cored arc welding than in $CO_2$ arc welding.

원자로압력용기용 SA508 Gr.4N Ni-Mo-Cr계 저합금강 용접열영향부의 용접후열처리에 따른 미세조직과 기계적 특성 평가 (Evaluation of Microstructure and Mechanical Properties on Post-Weld Heat Treatment in the Heat Affected Zone of SA508 Gr.4N Ni-Mo-Cr Low Alloy Steel for Reactor Pressure Vessel)

  • 이윤선;김민철;이봉상;이창희
    • 대한금속재료학회지
    • /
    • 제47권3호
    • /
    • pp.139-146
    • /
    • 2009
  • The heat-affected zone (HAZ) of SA508 Gr.4N Ni-Mo-Cr low alloy steel, which has higher Ni and Cr contents than SA508 Gr.3 Mn-Mo-Ni low alloy steel, was investigated on the microstructure and mechanical properties. The HAZ was categorized into seven characteristic zones (CGCG, FGCG, ICCG, SCCG, FGFG, ICIC and SCSC-HAZ) according to the peak temperature from the thermal cycle experienced during multi-pass welding. Post Weld Heat Treatment (PWHT) was conducted in the temperature range of $550{\sim}610^{\circ}C$ for 30 hours to evaluate the effect of PWHT conditions on the microstructure and mechanical properties. Before PWHT, CGHAZ and FGFGHAZ showed high yield strength (YS) ranging from 1000 to 1250 MPa, while YS of SCSCHAZ decreased from 607 MPa (observed for base metal) to 501 MPa. The Charpy impact energies of sub-HAZs fell below 100J at $-29^{\circ}C$, except in the SCSCHAZ. By applying PWHT to sub-HAZ specimens, YS decreased as the PWHT temperature increased. In the case of CGHAZs and FGFGHAZ heat-treated at $610^{\circ}C$, YS dropped drastically to the range of 654~686 MPa. From the Charpy impact test, the upper-shelf energy (USE) increased to approximately 250J and Index temperature ($T_{68J}$) decreased below $-50^{\circ}C$. Specifically, in FGFG, ICIC and SCSC-HAZ, $T_{68J}$ was below -110, which was lower than the case of base metal.