• Title/Summary/Keyword: J-test

Search Result 5,301, Processing Time 0.038 seconds

A FLOW AND PRESSURE DISTRIBUTION OF APR+ REACTOR UNDER THE 4-PUMP RUNNING CONDITIONS WITH A BALANCED FLOW RATE

  • Euh, D.J.;Kim, K.H.;Youn, Y.J.;Bae, J.H.;Chu, I.C.;Kim, J.T.;Kang, H.S.;Choi, H.S.;Lee, S.T.;Kwon, T.S.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.735-744
    • /
    • 2012
  • In order to quantify the flow distribution characteristics of APR+ reactor, a test was performed on a test facility, ACOP ($\underline{A}$PR+ $\underline{C}$ore Flow & $\underline{P}$ressure Test Facility), having a length scale of 1/5 referring to the prototype plant. The major parameters are core inlet flow and outlet pressure distribution and sectional pressure drops along the major flow path inside reactor vessel. To preserve the flow characteristics of prototype plant, the test facility was designed based on a preservation of major flow path geometry. An Euler number is considered as primary dimensionless parameter, which is conserved with a 1/40.9 of Reynolds number scaling ratio. ACOP simplifies each fuel assembly into a hydraulic simulator having the same axial flow resistance and lateral cross flow characteristics. In order to supply boundary condition to estimate thermal margins of the reactor, the distribution of inlet core flow and core exit pressure were measured in each of 257 fuel assembly simulators. In total, 584 points of static pressure and differential pressures were measured with a limited number of differential pressure transmitters by developing a sequential operation system of valves. In the current study, reactor flow characteristics under the balanced four-cold leg flow conditions at each of the cold legs were quantified, which is a part of the test matrix composing the APR+ flow distribution test program. The final identification of the reactor flow distribution was obtained by ensemble averaging 15 independent test data. The details of the design of the test facility, experiment, and data analysis are included in the current paper.

Evaluation of Fracture Toughness Using Small Punch Test for Aluminum 6061-T6 Type-3 Cylinder Liner (소형펀치시험법을 이용한 알루미늄 6061-T6 Type-3 용기 라이너의 파괴인성 평가)

  • Ma, Young-Wha;Lee, Seong-Hoon;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.21-26
    • /
    • 2011
  • Type-3 cylinder liner has a limitation of machining the standard specimen for fracture toughness test because it has approximately 5 mm in thickness as well as a curvature. Hence, it needs to be employed a miniature specimen test technique to evaluate fracture toughness of the cylinder liner. In this study, small punch (SP) test method was employed to evaluate fracture toughness of the cylinder liner. Load-displacement curve result measured from the SP test showed that the liner material was failed during membrane stretching in the general SP load-displacement curve. Additionally, it was shown that liner material was isotropic although the amount of plastic deformation was different depending on the direction due to manufacturing process characteristics. Fracture toughness, $J_{Ic}$, was evaluated using the SP test data. The value of fracture toughness obtained was $13.0kJ/m^2$. This value was similar to that of the same kind of materials. Therefore, the fracture toughness evaluated using the SP test data was reasonable.

STUDY ON PREDICTION OF THE INDUCED TEMPERATURE IN ENVIRONMENTAL TEST (얇은 평판의 환경시험에서 유도온도 예측에 대한 연구)

  • Lee, J.Y.;Baek, S.H.;Park, S.J.
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.24-32
    • /
    • 2008
  • Environmental test is divided into operation test and storage test. The temperature of storage test is induced temperature which is considered with all sort of the heat source. Induced temperature is the temperature to be adapted to each item and platform and can be induced by computer simulation, laboratory, and real field test. We considered the induced temperature to be associated with solar heat source. In this research. First, we compared the induced temperature which be occurred by one experiment for thin plate in solar test chamber with the other one which be occurred by computer simulation to be SolidWorks 2007 COSMOS FloWorks. After this verification, we showed induced temperature which can be occurred when the test item is stored. Especially, we bring out the induced temperature by applying the ambient temperatures which is presented by MIL-STD-810F and brought out in preceding research.

Control Effect of Fusarium Wilt of Cucumber by Trichoderma Collection Strain (Trichoderma 수집균주별 오이 덩굴쪼김병 방제효과)

  • Park, Youn Jin;Lee, Young Su;Ann, Seoung-Won;Cho, Yong-Koo;Lee, Hyung-Won;Jang, Myoung-Jun
    • Journal of Environmental Science International
    • /
    • v.28 no.3
    • /
    • pp.385-392
    • /
    • 2019
  • This study investigated the relationship among seven species of trichoderma through the identification of strains collected in Korea. The phylogenetic tree among the collected strains was classified into four groups. The trichoderma strains isolated in this way showed inhibitory effect on the fusarium wilt which is parasitic to cotyledon stem..The invisibility of J9, J10, J13 and J16 strains were higher in comparison with other strains in vitro test stand, and their spore production level was also higher. In the aluminum ring tests, it showed that the yield of the spores in J9, J10 and J13 were more than any other strain. As a result conducting the port test for cucumbers, the plant lengths of J13 were larger than the control plot, and the root lengths of all strains, except for J2 were longer than the control plot, and the root weights of J1, J9, J10, J13 and J16 were larger than the control plot. The disease severity for the fusarium wilt showed the smallest values at J13 and J16 in comparison with the control plot, and the control values of J13 and J16 were higher than other strains.