• 제목/요약/키워드: J-OFURO2

검색결과 7건 처리시간 0.189초

INTRODUCTION OF J-OFURO LATENT HEAT FLUX VERSION 2

  • Kubota, Masahisa;Hiroyuki, Tomita;iwasaki, Shinsuke;Hihara, Tsutomu;Kawatsura, Ayako
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.306-309
    • /
    • 2007
  • Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (J-OFURO) includes global ocean surface heat flux data derived from satellite data and are used in many studies related to air-sea interaction. Recently latent heat flux data version 2 was constructed in J-OFURO. In version 2 many points are improved compared with version 1. A bulk algorithm used for estimation of latent heat flux is changed from Kondo (1975) to COASRE 3.0(Fairall et al., 2005). In version 1 we used NCEP reanalysis data (Reynolds and Smith, 1994) as SST data. However, the temporal resolution of the data is weekly and considerably low. Recently there are many kinds of global SST data because we can obtain SST data using a microwave radiometer sensor such as TRMM/MI and Aqua/AMSR-E. Therefore, we compared many SST products and determined to use Merged satellite and in situ data Global Daily (MGD) SST provided by Japan Meteorological Agency. Since we use wind speed and specific humidity data derived from one DMSP/SSMI sensor in J-OFURO, we obtain two data at most one day. Therefore, there may be large sampling errors for the daily-mean value. In order to escape this problem, multi-satellite data are used in version 2. As a result we could improve temporal resolution from 3-days mean value in version 1 to daily-mean value in version 2. Also we used an Optimum Interpolation method to estimate wind speed and specific humidity data instead of a simple mean method. Finally the data period is extended to 1989-2004. In this presentation we will introduce latent heat flux data version 2 in J-OFURO and comparison results with other surface latent heat flux data such as GSSTF2 and HOAPS etc. Moreover, we will present validation results by using buoy data.

  • PDF

ANALYSIS AND INTERCOMPARISON OF VARIOUS GLOBAL EVAPORATION PRODUCTS

  • School of Marine Science and Technology, Tokai University, Tsuyoshi Watabe;School of Marine Science and Technology, Tokai University, Masahisa Kubota
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.285-288
    • /
    • 2008
  • We analyzed evaporation data in the Japanese Ocean Flux Data Sets with Use of Remote Sensing Observations (J-OFURO) Ver.2. There exists huge evaporation in Gulf Stream, Kuroshio Extension, the ocean dessert and the southern part of the Indian Ocean. The temporal variation of evaporation is overwhelmingly large, of which the standard deviation is more than 120(mm), in the Kuroshio Extension region. Also, the result of harmonic analysis gives that this large variation is closely related to annual variation. In addition, the first EOF mode shows long-term variation showing the maximum amplitude between 1992 and 1994 and remarkable decrease after 1994, and large amplitude in the equatorial region and northeast of Australia. The second and third modes were strongly influenced by El Nino. Moreover, we compared J-OFURO2 evaporation product with other products. We used six kinds of data sets (HOAPS3 and GSSTF2 of satellite data, NRA1, NRA2, ERA40 and JRA25 of reanalysis data) for comparison. Most products show underestimation in the most regions, in particular, in the northern North Pacific, mid-latitudes of the eastern South Pacific, and high-latitudes of the South Pacific compared with J-OFUR02. On the other hand, JRA25 and NRA2 show large overestimation in the equatorial regions. RMS difference between NRA2 and J-OFURO2 in the Kuroshio Extension was significantly large, more than 120(mm).

  • PDF

Validation Study of Gridded Product of Surface Wind/Wind-stress derived by Satellite Scatterometer Data in the Western North Pacific using Kuroshio Extension Observatory Buoy

  • Kutsuwada, Kunio;Morimoto, Naoki;Koyama, Makoto
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.394-397
    • /
    • 2006
  • Gridded products of surface wind/wind-stress over the world ocean have been constructed by using satellite scatterometer as the Japanese Ocean Flux data sets with Use of Remote-sensing Observation (J-OFURO) data. Our previous validation study in the tropical Pacific using TAO/Triton and NDBC buoys revealed high reliability of our products. In this study, the Kuroshio Extension Observatory (KEO) buoy data are used for validation of other gridded wind-stress products including the NCEP-1 and 2 in the western North Pacific region where there have been few in-situ data. Results reveal that our J-OFURO product has almost zero mean difference and smallest root-mean-square (RMS) difference, while the NCEP-1 and 2 ones significantly positive biases and relatively high RMS difference. Intercomparison between the J-OFURO and NCEP products in a wide region of the North Pacific covered by the westerly winds exhibits that the NCEPs have larger magnitudes in the wind stress than the J-OFURO's, suggesting overestimation of the NCEPs.

  • PDF

ACCURATE ESTIMATION OF GLOBAL LATENT HEAT FLUX USING MULTI-SATELLITE DATA

  • Tomita Hiroyuki;Kubota Masahisa
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.14-17
    • /
    • 2005
  • Global latent heat flux data sets are crucial for many studies such as those related to air-sea interaction and climate variation. Currently, various global latent heat flux data sets are constructed using satellite data. Japanese Ocean Flux data sets with Use of Remote sensing Observations (J-OFURO) includes one of the satellite-derived global latent heat flux data (Kubota et aI., 2000). In this study, we review future development of J-OFURO global latent heat flux data set. In particular, we investigate usage of multi-satellite data for estimating accurate global latent heat flux. Accurate estimation of surface wind speeds over the global ocean is one of key factors for the improved estimation of global latent heat flux. First, we demonstrate improvement of daily wind speed estimation using multi-satellites data from microwave radiometers and scatterometers such as DMSP/SSMI, ERS/AMI, QuikSCAT/SeaWinds, AqualAMSR-E, ADEOS2/AMSR etc. Next, we demonstrate improvement of global latent heat flux estimation using the wind speed data derived from multi-satellite data.

  • PDF

VARIABILITY OF THE LATENT HEAT FLUX DURING 1988-2005

  • Iwasaki, Shinsuke;Kubota, Masahisa
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.289-292
    • /
    • 2008
  • Recently, several satellite data analyses projects and numerical weather prediction (NWP) reanalysis projects have produced the ocean surface Latent Heat Flux (LHF) data sets in the global coverage. Comparisons of these LHF data sets showed substantial discrepancies in the LHF values. Recently, the increase of LHF in during 1970s-1990s over the global ocean is shown by the LHF data that have been developed at the Objective Analyzed Air-Sea Fluxes (OAFlux) project. It is interesting to investigate the existence of the increase of LHF over a global ocean in the other LHF products. It is interesting to investigate the existence of the increase of LHF over a global ocean in the other LHF products. In this study, we assessed the consistencies and discrepancies of the inter-annual variability and decadal trend for the period 1988-2005 among six LHF products ((J-OFURO2, HOAPS3, IFREMER, NCEP1,2 and OAFlux) over the global ocean. As results, all LHF products showed a positive trend. In particular, the positive trend in satellite-based data analyses (J-OFURO2, HOAPS3, IFREMER) is larger than that in reanalysis products (NCEP1/2). Also, the consistencies and discrepancies are shown on the spatial patterns of the LHF trends across the six data sets. The positive trend of LHF is remarkable in the regions of western boundary currents such as the Kuroshio and the Gulf Stream in all LHF data sets. But, the discrepancies are shown on the spatial patterns of the LHF trends in tropics and subtropics. These discrepancies are primarily caused by the differences of the input meteorological state variables, particularly for the air specific humidity, used to calculate LHF.

  • PDF

Reconstruction and Validation of Gridded Product of Wind/Wind-stress derived by Satellite Scatterometer Data over the World Ocean and its Impact for Air-Sea Interaction Study

  • Kutsuwada, Kunio;Koyama, Makoto;Morimoto, Naoki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.33-36
    • /
    • 2007
  • We have persistently constructed gridded products of surface wind/wind stress over the world ocean using satellite scatterometer (ERS and Qscat). They are available for users as the Japanese Ocean Flux data sets with Use of Remote sensing Observation (J-OFURO) data together with heat flux components. Recently, a new version data of the Qscat/SeaWinds based on improved algorithm for rain flag and high wind-speed range have been delivered, and allowed us to reconstruct gridded product with higher spatial resolution. These products are validated by comparisons with in-situ measurement data by mooring buoys such as TAO/TRITON, NDBC and the Kuroshio Extension Observation (KEO) buoys, together with numerical weather prediction model products such as the NCEP-1 and 2. Results reveal that the new product has almost the same magnitude in mean difference as the previous version of Qscat product and much smaller than the NCEP-1 and 2. On the other hand, it is slightly larger root-mean-square (RMS) difference than the previous one and NCEPs for the comparison using the KEO buoy data. This may be due to the deficit of high wind speed data in the buoy measurement. The high resolution product, together with sea surface temperature (SST) one, is used to examine a new type of relationship between the lower atmosphere and upper ocean in the Kuroshio Extension region.

  • PDF

Impact of Reconstructed Gridded Product of Global Wind/Wind-stress Field derived by Satellite Scatterometer Data

  • Koyama, Makoto;Kutsuwada, Kunio;Morimoto, Naoki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.309-312
    • /
    • 2008
  • The advent of high resolution products of surface wind and temperature derived by satellite data has permitted us to investigate ocean and atmosphere interaction studies in detail. Especially the Kuroshio extension region of the western North Pacific is considered to be a key area for such studies. We have constructed gridded products of surface wind/wind stress over the world ocean using satellite scatterometer (Qscat/SeaWinds), available as the Japanese Ocean Flux data sets with Use of Remote sensing Observation (J-OFURO). Using new data based on improved algorithm which have been recently delivered, we are reconstructing gridded product with higher spatial resolution. Intercomparison of this product with the previous one reveals that there are some discrepancies between them in short-period and high wind-speed ranges especially in the westerly wind region. The products are validated by not only comparisons with in-situ measurement data by mooring buoys such as TAO/TRITON in the tropical Pacific and the Kuroshio Extension Observation (KEO) buoys, but also intercomparison with numerical weather prediction model (NWPM) products (the NRA-1 and 2). Our products have much smaller mean difference in the study areas than the NWPM ones, meaning higher reliability compared with the NWPM products. Using the high resolution products together with sea surface temperature (SST) data, we examine a new type of relationship between the lower atmosphere and upper ocean in the Kuroshio Extension region. It is suggested that the spatial relation between the wind speed and SST depends upon, more or less, the surrounding oceanic condition.

  • PDF