• Title/Summary/Keyword: J-Estimation

Search Result 1,375, Processing Time 0.027 seconds

Application of Meteorological Drought Index using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) Based on Global Satellite-Assisted Precipitation Products in Korea (위성기반 Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)를 활용한 한반도 지역의 기상학적 가뭄지수 적용)

  • Mun, Young-Sik;Nam, Won-Ho;Jeon, Min-Gi;Kim, Taegon;Hong, Eun-Mi;Hayes, Michael J.;Tsegaye, Tadesse
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.1-11
    • /
    • 2019
  • Remote sensing products have long been used to monitor and forecast natural disasters. Satellite-derived rainfall products are becoming more accurate as space and time resolution improve, and are widely used in areas where measurement is difficult because of the periodic accumulation of images in large areas. In the case of North Korea, there is a limit to the estimation of precipitation for unmeasured areas due to the limited accessibility and quality of statistical data. CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) is global satellite-derived rainfall data of 0.05 degree grid resolution. It has been available since 1981 from USAID (U.S. Agency for International Development), NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration). This study evaluates the applicability of CHIRPS rainfall products for South Korea and North Korea by comparing CHIRPS data with ground observation data, and analyzing temporal and spatial drought trends using the Standardized Precipitation Index (SPI), a meteorological drought index available through CHIRPS. The results indicate that the data set performed well in assessing drought years (1994, 2000, 2015 and 2017). Overall, this study concludes that CHIRPS is a valuable tool for using data to estimate precipitation and drought monitoring in Korea.

Estimation and Classification of Flow Regimes for South Korean Streams and River

  • Park, Kyug Seo;Choi, Ji-Woong;Park, Chan-Seo;An, Kwang-Guk;Wiley, Michael J.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.106-106
    • /
    • 2015
  • The information of flow regimes continues to be norm in water resource and watershed management, in that stream flow regime is a crucial factor influencing water quality, geomorphology, and the community structure of stream biota. The objectives of this study were to estimate Korean stream flows from landscape variables, classify stream flow gages using hydraulic characteristics, and then apply these methods to ungaged biological monitoring sites for effective ecological assessment. Here I used a linear modeling approach (MLR, PCA, and PCR) to describe and predict seasonal flow statistics from landscape variables. MLR models were successfully built for a range of exceedance discharges and time frames (annual, January, May, July, and October), and these models explained a high degree of the observed variation with r squares ranging from 0.555 (Q95 in January) to 0.899 (Q05 in July). In validation testing, predicted and observed exceedance discharges were all significantly correlated (p<0.01) and for most models no significant difference was found between predicted and observed values (Paired samples T-test; p>0.05). I classified Korean stream flow regimes with respect to hydraulic and hydrologic regime into four categories: flashier and higher-powered (F-HP), flashier and lower-powered (F-LP), more stable and higher-powered (S-HP), and more stable and lower-powered (S-LP). These four categories of Korean streams were related to with the characteristics of environmental variables, such as catchment size, site slope, stream order, and land use patterns. I then applied the models at 684 ungaged biological sampling sites used in the National Aquatic Ecological Monitoring Program in order to classify them with respect to basic hydrologic characteristics and similarity to the government's array of hydrologic gauging stations. Flashier-lower powered sites appeared to be relatively over-represented and more stable-higher powered sites under-represented in the bioassessment data sets.

  • PDF

Estimation of ship operational efficiency from AIS data using big data technology

  • Kim, Seong-Hoon;Roh, Myung-Il;Oh, Min-Jae;Park, Sung-Woo;Kim, In-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.440-454
    • /
    • 2020
  • To prevent pollution from ships, the Energy Efficiency Design Index (EEDI) is a mandatory guideline for all new ships. The Ship Energy Efficiency Management Plan (SEEMP) has also been applied by MARPOL to all existing ships. SEEMP provides the Energy Efficiency Operational Indicator (EEOI) for monitoring the operational efficiency of a ship. By monitoring the EEOI, the shipowner or operator can establish strategic plans, such as routing, hull cleaning, decommissioning, new building, etc. The key parameter in calculating EEOI is Fuel Oil Consumption (FOC). It can be measured on board while a ship is operating. This means that only the shipowner or operator can calculate the EEOI of their own ships. If the EEOI can be calculated without the actual FOC, however, then the other stakeholders, such as the shipbuilding company and Class, or others who don't have the measured FOC, can check how efficiently their ships are operating compared to other ships. In this study, we propose a method to estimate the EEOI without requiring the actual FOC. The Automatic Identification System (AIS) data, ship static data, and environment data that can be publicly obtained are used to calculate the EEOI. Since the public data are of large capacity, big data technologies, specifically Hadoop and Spark, are used. We verify the proposed method using actual data, and the result shows that the proposed method can estimate EEOI from public data without actual FOC.

Group Contribution Method and Support Vector Regression based Model for Predicting Physical Properties of Aromatic Compounds (Group Contribution Method 및 Support Vector Regression 기반 모델을 이용한 방향족 화합물 물성치 예측에 관한 연구)

  • Kang, Ha Yeong;Oh, Chang Bo;Won, Yong Sun;Liu, J. Jay;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • To simulate a process model in the field of chemical engineering, it is very important to identify the physical properties of novel materials as well as existing materials. However, it is difficult to measure the physical properties throughout a set of experiments due to the potential risk and cost. To address this, this study aims to develop a property prediction model based on the group contribution method for aromatic chemical compounds including benzene rings. The benzene rings of aromatic materials have a significant impact on their physical properties. To establish the prediction model, 42 important functional groups that determine the physical properties are considered, and the total numbers of functional groups on 147 aromatic chemical compounds are counted to prepare a dataset. Support vector regression is employed to prepare a prediction model to handle sparse and high-dimensional data. To verify the efficacy of this study, the results of this study are compared with those of previous studies. Despite the different datasets in the previous studies, the comparison indicated the enhanced performance in this study. Moreover, there are few reports on predicting the physical properties of aromatic compounds. This study can provide an effective method to estimate the physical properties of unknown chemical compounds and contribute toward reducing the experimental efforts for measuring physical properties.

A study on collision strength assessment of a jack-up rig with attendant vessel

  • Ma, Kuk Yeol;Kim, Jeong Hwan;Park, Joo Shin;Lee, Jae Myung;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.241-257
    • /
    • 2020
  • The rapid proliferation of oil/gas drilling and wind turbine installations with jack-up rig-formed structures increases structural safety requirements, due to the greater risks of operational collisions during use of these structures. Therefore, current industrial practices and regulations have tended to increase the required accidental collision design loads (impact energies) for jack-up rigs. However, the existing simplified design approach tends to be limited to the design and prediction of local members due to the difficulty in applying the increased uniform impact energy to a brace member without regard for the member's position. It is therefore necessary to define accidental load estimation in terms of a reasonable collision scenario and its application to the structural response analysis. We found by a collision probabilistic approach that the kinetic energy ranged from a minimum of 9 MJ to a maximum 1049 MJ. Only 6% of these values are less than the 35 MJ recommendation of DNV-GL (2013). This study assumed and applied a representative design load of 196.2 MN for an impact load of 20,000 tons. Based on this design load, the detailed design of a leg structure was numerically verified via an FE analysis comprising three categories: linear analysis, buckling analysis and progressive collapse analysis. Based on the numerical results from this analysis, it was possible to predict the collapse mode and position of each member in relation to the collision load. This study provided a collision strength assessment between attendant vessels and a jack-up rig based on probabilistic collision scenarios and nonlinear structural analysis. The numerical results of this study also afforded reasonable evaluation criteria and specific evaluation procedures.

Icevaning control of an Arctic offshore vessel and its experimental validation

  • Kim, Young-Shik;Kim, Jinwhan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.208-222
    • /
    • 2021
  • Managing with the presence of sea ice is the primary challenge in the operation of floating platforms in the Arctic region. It is widely accepted that offshore structures operating in Arctic conditions need station-keeping methods as well as ice management by icebreakers. Dynamic Positioning (DP) is one of the station-keeping methods that can provide mobility and flexibility in marine operations. The presence of sea ice generates complex external forces and moments acting on the vessel, which need to be counteracted by the DP system. In this paper, an icevaning control algorithm is proposed that enables Arctic offshore vessels to perform DP operations. The proposed icevaning control enables each vessel to be oriented toward the direction of the mean environmental force induced by ice drifting so as to improve the operational safety and reduce the overall thruster power consumption by having minimum external disturbances naturally. A mathematical model of an Arctic offshore vessel is summarized for the development of the new icevaning control algorithm. To determine the icevaning action of the Arctic offshore vessel without any measurements and estimation of ice conditions including ice drift, task and null space are defined in the vessel model, and the control law is formulated in the task space. A backstepping technique is utilized to handle the nonlinearity of the Arctic offshore vessel's dynamic model, and the Lyapunov stability theory is applied to guarantee the stability of the proposed icevaning control algorithm. Experiments are conducted in the ice tank of the Korea Research Institute of Ships and Ocean Engineering to demonstrate the feasibility of the proposed approach.

Assessment of the effect of biofilm on the ship hydrodynamic performance by performance prediction method

  • Farkas, Andrea;Degiuli, Nastia;Martic, Ivana
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.102-114
    • /
    • 2021
  • Biofouling represents an important problem in the shipping industry since it causes the increase in surface roughness. The most of ships in the current world fleet do not have good coating condition which represents an important problem due to strict rules regarding ship energy efficiency. Therefore, the importance of the control and management of the hull and propeller fouling is highlighted by the International Maritime Organization and the maintenance schedule optimization became valuable energy saving measure. For adequate implementation of this measure, the accurate prediction of the effects of biofouling on the hydrodynamic characteristics is required. Although computational fluid dynamics approach, based on the modified wall function approach, has imposed itself as one of the most promising tools for this prediction, it requires significant computational time. However, during the maintenance schedule optimization, it is important to rapidly predict the effect of biofouling on the ship hydrodynamic performance. In this paper, the effect of biofilm on the ship hydrodynamic performance is studied using the proposed performance prediction method for three merchant ships. The applicability of this method in the assessment of the effect of biofilm on the ship hydrodynamic performance is demonstrated by comparison of the obtained results using the proposed performance prediction method and computational fluid dynamics approach. The comparison has shown that the highest relative deviation is lower than 4.2% for all propulsion characteristics, lower than 1.5% for propeller rotation rate and lower than 5.2% for delivered power. Thus, a practical tool for the estimation of the effect of biofouling with lower fouling severity on the ship hydrodynamic performance is developed.

Reference dosimetry for inter-laboratory comparison on retrospective dosimetry techniques in realistic field irradiation experiment using 192Ir

  • Choi, Yoomi;Kim, Hyoungtaek;Kim, Min Chae;Yu, Hyungjoon;Lee, Hyunseok;Lee, Jeong Tae;Lee, Hanjin;Kim, Young-su;Kim, Han Sung;Lee, Jungil
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2599-2605
    • /
    • 2022
  • The Korea Retrospective Dosimetry network (KREDOS) performed an inter-laboratory comparison to confirm the harmonization and reliability of the results of retrospective dosimetry using mobile phone. The mobile phones were exposed to 192Ir while attached to the human phantoms in the field experiment, and the exposure doses read by each laboratory were compared. This paper describes the reference dosimetry performed to present the reference values for inter-comparison and to obtain additional information about the dose distribution. Reference dosimetry included both measurement using LiF:Mg,Cu,Si and calculation via MCNP simulation to allow a comparison of doses obtained with the two different methodologies. When irradiating the phones, LiF elements were attached to the phones and phantoms and irradiated at the same time. The comparison results for the front of the phantoms were in good agreement, with an average relative difference of about 10%, while an average of about 16% relative difference occurred for the back and side of the phantom. The differences were attributed to the different characteristics of the physical and simulated phantoms, such as anatomical structure and constituent materials. Nevertheless, there was about 4% of under-estimation compared to measurements in the overall linear fitting, indicating the calculations were well matched to the measurements.

Gadolinium- and lead-containing functional terpolymers for low energy X-ray protection

  • Zhang, Yu-Juan;Guo, Xin-Tao;Wang, Chun-Hong;Lu, Xiang An;Wu, De-Feng;Zhang, Ming
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4130-4136
    • /
    • 2021
  • By polymerization of gadolinium methacrylate (Gd (MAA)3), lead methacrylate (Pb(MAA)2) and methyl methacrylate (MMA), Gd and Pb were chemically bonded into polymers. The X-ray shielding performance was evaluated by Monte Carlo simulation method, and the results showed that the more metal functional organic monomer, the better the shielding performance of terpolymers. When the X-ray energy is 65 keV, Gd (MAA)3-containing polymers have better shielding performance than Pb(MAA)2-containing polymers. Gd could compensate for the weak absorption region of Pb. Therefore, polymers containing both Gd and Pb enhanced shielding efficiency against X-ray in various low-energy ranges. For obtaining terpolymers with uniform monomer compositions, the relationship between the monomer composition of the terpolymers and the conversion level was optimized by calculating the reactivity ratios. The value of reactivity ratios of r (Gd (MAA)3/Pb(MAA)2), r (Pb(MAA)2/Gd (MAA)3), r (Gd (MAA)3/MMA), r (MMA/Gd (MAA)3), r (Pb(MAA)2/MMA) and r (MMA/Pb(MAA)2) was 0.483, 0.004, 0.338, 2.508, 0.255, 0.029. The terpolymers with uniform monomer composition could be obtained by controlling the monomer compositions or conversion levels. The results can provide new radiation protection materials and contribute to the improvement in nuclear safety.

ACA: Automatic search strategy for radioactive source

  • Jianwen Huo;Xulin Hu;Junling Wang;Li Hu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3030-3038
    • /
    • 2023
  • Nowadays, mobile robots have been used to search for uncontrolled radioactive source in indoor environments to avoid radiation exposure for technicians. However, in the indoor environments, especially in the presence of obstacles, how to make the robots with limited sensing capabilities automatically search for the radioactive source remains a major challenge. Also, the source search efficiency of robots needs to be further improved to meet practical scenarios such as limited exploration time. This paper proposes an automatic source search strategy, abbreviated as ACA: the location of source is estimated by a convolutional neural network (CNN), and the path is planned by the A-star algorithm. First, the search area is represented as an occupancy grid map. Then, the radiation dose distribution of the radioactive source in the occupancy grid map is obtained by Monte Carlo (MC) method simulation, and multiple sets of radiation data are collected through the eight neighborhood self-avoiding random walk (ENSAW) algorithm as the radiation data set. Further, the radiation data set is fed into the designed CNN architecture to train the network model in advance. When the searcher enters the search area where the radioactive source exists, the location of source is estimated by the network model and the search path is planned by the A-star algorithm, and this process is iterated continuously until the searcher reaches the location of radioactive source. The experimental results show that the average number of radiometric measurements and the average number of moving steps of the ACA algorithm are only 2.1% and 33.2% of those of the gradient search (GS) algorithm in the indoor environment without obstacles. In the indoor environment shielded by concrete walls, the GS algorithm fails to search for the source, while the ACA algorithm successfully searches for the source with fewer moving steps and sparse radiometric data.