• Title/Summary/Keyword: J-A model

Search Result 5,806, Processing Time 0.035 seconds

Sensitivity of an Anisotropic Magnetoresistance Device with Different Bias Conditions

  • Kim, T.S.;Kim, K.C.;Kim, Kibo;K. Koh;Y.J. Song;Song, Y.S.;Suh, S.J.;Kim, Y.S.
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.36-41
    • /
    • 2001
  • A micromagnetic model and a single-domain model simulation programs were used to analyze the sensitivity of a $20\mu m\times 60\mu m \times 1000{\AA}$ permalloy strip as a magnetoresistance sensor with bias fields of various directions and magnitudes. The micromagnetic model agrees with the measured sensitivity data better than the single-domain model. The data show the highest peak sensitivity with the bias field at 90$^{\circ}$to the current. The peak sensitivity decreases and the peak broadens as the bias angle decreases. The simulation using the micromagnetic model shows that a bias angle smaller than 90$^{\circ}$eads to magnetization patterns which are free from closure domains or vertices over a wider range of bias fields.

  • PDF

Determination of Co-generator Model Parameters (자가용 발전기 모델 정수 결정)

  • Kim, D.J.;Kim, H.M.;Chun, Y.H.;Kim, J.W.;Jeon, J.H.;Kook, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.236-240
    • /
    • 2001
  • This paper presents the derivation of model parameters against a comparatively small industrial power plant, and validates its model parameters using the stored data measured at the time of on-site generator characteristic testing. Dynamic models such as generator, excitation system, and turbine/governor are mainly dealt in this paper. For the purpose of validation of derived model parameters, the measured results are compared with simulation results. Those of the comparisons between measured results and simulation results show good match.

  • PDF

Determination of Material Parameters for Microstructure Prediction Model Based on Recystallization and Grain Growth Behaviors (재결정 및 결정립 성장거동을 기초한 조직예측 모델에 대한 변수 결정방법)

  • Yeom, J.T.;Kim, J.H.;Hong, J.K.;Park, N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.270-273
    • /
    • 2009
  • This work describes a method of determining material parameters included in recrystallization and grain growth models. Focus is on the recrystallization and grain growth models of Ni-Fe base superalloy, Alloy 718. High temperature compression tests at different strain, strain rate and temperature conditions were chosen to determine the material parameters of dynamic recrystallization model. The critical strain and dynamically recrystallized grain size and fraction at various process variables were quantitated with the microstructual analysis and strain-stress relationships of the compression tests. Besides, isothermal heat treatments were utilized to fit the material constants included in the grain growth model. Verification of the determined material parameters is carried out by comparing the measured data obtained from other compression tests.

  • PDF

Modeling of Grade Change Operations in Paper Mills

  • Ko, Jun-Seok;Yeo, Yeong-Koo;Ha, Seong-Mun;Lim, Jung-Woo;Ko, Du-Seok;Hong Kang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.5
    • /
    • pp.46-52
    • /
    • 2003
  • In this work we developed the closed-loop model of a paper machine during grade change with the intention to provide a reliable dynamic model to be used in the model-based grade change control scheme. During the grade change, chemical and physical characteristics of paper process change with time. It is very difficult to represent these characteristics on-line by using physical process models. In this work, the wet circulation part and the drying section were considered as a single process and closed-loop identification technique was used to develop the grade change model. Comparison of the results of numerical simulations with mill operation data demonstrates the effectiveness of the model identified.

The Effect of the Second Impact for Abrasive Jet Micromachining (미세입자 분사 가공에서 2차 충돌의 영향)

  • Park Y.W.;Lee J.M.;Ko T.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.488-491
    • /
    • 2005
  • Abrasive Jet Micromachining (AJM) is a process that uses high pressure air with micron-sized particles to erode a substrate. It has been considered as the most economic and appropriate technique to pattern glass surfaces for the flat panel applications. To accelerate the industrialization of AJM, it is necessary to understand the erosion mechanisms thoroughly. Thus, this paper introduces a new method to model the erosion mechanism in AJM. The model is developed by using the concept of the accumulation of the microdeformation caused by each particle. And this paper proposes the model added the effects of second impact. The developed model is used to simulate the erosion profile, and is compared with the model considered only first impact. It can be concluded that the proposed model predicts the erosion profile more accurately.

  • PDF

The development and application of on-line model for the prediction of roll force in hot strip rolling (얼간 사상 압연중 압하력 예측 모델 개발 및 적용)

  • Lee J. H.;Choi J. W.;Kwak W. J.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.175-183
    • /
    • 2004
  • In hot strip rolling, a capability for precisely predicting roll force is crucial for sound process control. In the past, on-line prediction models have been developed mostly on the basis of Orowan's theory and its variation. However, the range of process conditions in which desired prediction accuracy could be achieved was rather limited, mainly due to many simplifying assumptions inherent to Orowan's theory. As far as the prediction accuracy is concerned, a rigorously formulated finite element(FE) process model is perhaps the best choice. However, a FE process model in general requires a large CPU time, rendering itself inadequate for on-line purpose. In this report, we present a FE-based on-line prediction model applicable to precision process control in a finishing mill(FM). Described was an integrated FE process model capable of revealing the detailed aspects of the thermo-mechanical behavior of the roll-strip system. Using the FE process model, a series of process simulation was conducted to investigate the effect of diverse process variables on some selected non-dimensional parameters characterizing the thermo-mechanical behavior of the strip. Then, it was shown that an on-line model for the prediction of roll force could be derived on the basis of these parameters. The prediction accuracy of the proposed model was examined through comparison with measurements from the hot strip mill.

  • PDF

2-Dimensional Numerical Studies on Thin HTS Film under Time Varying Magnetic Field Using Finite Element Method (변화하는 자기장 하에 있는 고온초전도체에 대한 유한요소법을 이용한 2차원 수치해석 연구)

  • Kwak, K.S.;Lee, H.Y.;Rhee, J.K.;Youm, D.;Yoo, J.;Han, Y.H.;Park, B.J.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.151-157
    • /
    • 2012
  • In this paper, we used E-J constitutive law and H-formulation to calculate magnetic field profile, current density, and magnetization of high temperature superconductor (HTS) placed in time varying applied magnetic field. Finite element method (FEM)-based software, Comsol Multiphysics 3.5a, was employed to simulate 2-dimensional model of a superconducting thin strip. The numerical results based on Kim's critical state model were compared with the case of strip in a perpendicular field in the Brandt's paper as well as experimental data observed by Scanning Hall Probe and SQUID.

Application of Conformal Mapping in Analysis the Parallel Stripline Resonator

  • Tran, T.H.;You, S.J.;Kim, J.H.;Seong, D.J.;Jeong, J.R.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.180-180
    • /
    • 2012
  • A microplasma system source based on microwave parallel stripline resonator (MPSR) was developed for the generation of microplasmas in a wide range of pressure from some torr to 760 torr. This source was operated at its resonance frequency that much depends upon not only its discharge gap size but also operated pressure. This paper applied a simple circuit model to analyze the effects of discharge gap size and pressure to resonance frequency and impedance of MPSR in the cases with and without plasma exist inside the discharge gap. In the process of calculating, the conformal mapping method was used to estimate the capacitance of the MPSR. The calculating results by using circuit model agree well with the simulation results that using commercial CST microwave studio software.

  • PDF

Spring-back Prediction of DP980 Steel Sheet Using a Yield Function with a Hardening Model (항복함수 및 경화모델에 따른 DP980 강판의 스프링백 예측)

  • Kim, J.H.;Kang, G.S.;Lee, H.S.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.189-194
    • /
    • 2016
  • In the current study, spring-back of DP980 steel sheet was numerically evaluated for U-bending using a yield function with a hardening model. For spring-back prediction, two types of yield functions - Hill'48 and Yld2000-2d - were considered. Additionally, isotropic hardening and the Yoshida-Uemori model were used to investigate the spring-back behavior. The parameters for each model were obtained from uniaxial tension, uniaxial tension-compression, uniaxial tension-unloading and hydraulic bulging tests. The numerical simulations were performed using the commercial software, PAM-STAMP 2G. The results were compared with experimental data from a U-bending process.

Plasmaspheric contribution to the GPS TEC

  • Jee, Geon-Hwa;Lee, Han-Byul;Kim, Yong-Ha;Chung, Jong-Kyun;Cho, Jung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.30.3-31
    • /
    • 2010
  • We performed a comprehensive comparison between GPS Global Ionosphere Map (GIM) and TOPEX/Jason (T-J) TEC data for the periods of 1998~2009 in order to assess the performance of GIM over the global ocean where the GPS ground stations are very sparse. Using the GIM model constructed by CODE at University of Bern, the GIM TEC values were obtained along the T-J satellite orbit at the locations and times of the measurements and then binned into various geophysical conditions for direct comparison with the T-J TECs. On the whole, the GIM model was able to reproduce the spatial and temporal variations of the global ionosphere as well as the seasonal variations. However, the GIM model was not accurate enough to represent the well-known ionospheric structures such as the equatorial anomaly, the Weddell Sea Anomaly, and the longitudinal wave structure. Furthermore, there seems to be a fundamental limitation of the model showing the unexpected negative differences (i.e., GPS < T-J) in the northern high latitude and the southern middle and high latitude regions. The positive relative differences (i.e., GIM > T-J) at night represent the plasmaspheric contribution to GPS TEC, which is maximized, reaching up to 100% of the corresponding T-J TEC values in the early morning sector. In particular, the relative differences decreased with increasing solar activity and this may indicate that the plasmaspheric contribution to the maintenance of the nighttime ionosphere does not increase with solar activity, which is different from what we normally anticipate. Among these results, the plasmaspheric contribution to the ionospheric GPS TEC will be presented in this talk and the rest of it will presented in the companion paper (poster presentation).

  • PDF