• Title/Summary/Keyword: J project

Search Result 584, Processing Time 0.018 seconds

Studies on the Absorption Capacity of Phosphorus of Korean Top-soils (우리나라 표층토(表層土)의 인산흡수력(燐酸吸收力)에 관(關)한 연구(硏究))

  • Park, C.S.;Han, K.H.;Lim, S.K.;Lee, J.H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 1969
  • A total of 129 surface(upto 30 cm depth) soil samples were selected from the profile samples collected during reconnaissance soil survey in 1967, for the determination of phosphorus absorption co-efficient. The distribution range for each soil association has been established. The physicochemical factors affecting the phosphorus absorption coefficient have also been examined. The following general conclusions can be drown: 1. In general, the phosphorus absorption coefficient of the soil association of presently arable land are lower than the soils which are not in cultivation. 2. The higher the cation exchange capacity of soils, the higher is the phosphorus absorption coefficient. The factors governing phosphorus absorption coefficient in various soil associations are as follows: Parent Material Soil Association Governing Factor Fluvio marine Low Humic Gley Fluvio marine Alluvial Complex Narrow valley Siliceo mafic materials Red-yellow podzolic Redish Siliceo mafic materials Brown Lateritic Clay content Siliceous crystalline materials Lithosols C.E.C. & Clay content Alluvium Low Humic Alluvium Gley Alluvial Organic matter Siliceous crystalline materials Red-Yellow Podzolic Organic matter and clay content 4. The relation between phosphorus absorption coefficient determined by $(NH_4)_2HPO_4(y)$ and by the P 700 ppm $NaH_2PO_4(x)$ is $Y=2.716X+37(r=0.96^{**})$ which shows highly significant positive correlation and linear regression.

  • PDF

Study on the Storage of Chestnut (밤 저장(貯藏)에 관(關)한 연구(硏究))

  • Yim, Ho;Kim, Choung-Ok;Shin, Dang-Wha;Suh, Kee- Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.170-175
    • /
    • 1980
  • A mass production of chestnut necessiates the development of economic long-term storage method. The main objective of this study was to confirm the technical aspect of the chestnut storage method which was developed by two year project and to review the method of commercial application. The chestnut used for the experiments were separated in brine $(5.5{\sim}6.0^{\circ}\:B{\acute{a}}ume)$ into matured and unmatured lots and fumigated with $CS_2$ at a 5 $lb/27\;m^3$ level for $25{\sim}30\;hrs.$ The chestnuts were packed in wooden boxes with sawdust (50% moisture) in the ratio of 1 : 1 by volume. The boxes were stored in the cold room $(1{\pm}1^{\circ}C,\;85{\sim}95%\;RH)$ and the cellar ($0{\sim}10^{\circ}C$, controlled only by circulating night cool air). The results obtained were as follows: 1. Fully matured chestnut could be successfully preserved $8{\sim}9\;months$ at a l0% decay level in the cold room and $4{\sim}5\;months$ months in cellar. 2. Immatured chestnuts wire inferior to the matured in storage stability. At the maximum storage period, its storage life was two months shorter. 3. The heat transfer equation of piled chestnuts with sawdust can be suggested as $T_{\infty}-T_0=(T_{\infty}-T_0){\cdot}10^{-t/320}$ and j and $f_h$ values were 1 and 320 min, respectively. 4. The chestnuts in the package of storage unit had longer shelf life than naked chestnut during the retail distribution at ambient temperature.

  • PDF

Seed Potato Certification in Korea (한국의 씨감자 검역)

  • La Yong-Joon;Franckowiak J. D.;Brown W. M.
    • Korean journal of applied entomology
    • /
    • v.16 no.3 s.32
    • /
    • pp.163-170
    • /
    • 1977
  • Potato diseases, especially mosaics and leaf roll, appear to reduce potato yield in Korea more than any other factor. A seed potato certification program was established at the Alpine Experiment Station (AES) in 1961 to produce high quality seed potatoes for distribution to Korean farmers. The present program for production of certified seed of Namjak (Irish Cobbler), the only variety recommended for spring plantings, is outlined. In 1976, approximately 10,000 MT of certified grade Namjak seed was produced by members of two Seed Producers Cooperatives in the Daekwanryeong area for distribution by the Office of Seed Production and Distribution (OSPD). The seed was inspected and certified by officers of the National Agricultural Products Inspection Office (NAPIO). Although the quality of the certified seed is far superior to that used by many farmers, the supply planted less than 1/5 of the 1977 potato crop. Certified seed of Shimabara, the variety recommended for autumn plantings, is not produced in Korea. The yield response of virus infected seed to improved cultural practices is poor. Therefore, an increase in potato acreage and yields appears to be possible only if more good quality seed is used by Korean farmers. A two or three fold increase in seed supply would be desirable. The volume of seed could be increased by expanding the production area and by improving yield in seed fields. More land is available in the alpine area and good seed potatoes could be grown in other parts of Korea. Planting better quality seeds and using better cultural pracitces would improve seed yields. Several techniques could be used to improve the quality of elite seed produced at AES. Changes in seed potato certification program should be made so that healthy seed stocks of new varieties can be released rapidly.

  • PDF

Studies on Nutrio-physiological Response of Rice Plant to Root Environment (근부환경(根部環境)에 따른 수도(水稻)의 영양생리적(營養生理的) 반응(反應)에 관(關)한 연구(硏究))

  • Park, J.K.;Kim, Y.S.;Oh, W.K.;Park, H.;Yazawa, F.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.53-68
    • /
    • 1969
  • The nutriophysiological response of rice plant to root environment was investigated with eye observation of root development and rhizosphere in situation. The results may be summarized as follows: 1) The quick decomposition of organic matter, added in low yield soil, caused that the origainal organic matter content was reached very quickly, in spite of it low value. In high yield soil the reverse was seen. 2) In low yield soil root development, root activity and T/R value were very low, whereas addition of organic matter lowered them still wore. This might be contributed to gas bubbles around the root by the decomposition of organic matter. 3) Varietal difference in the response to root environment was clear. Suwon 82 was more susceptible to growth-inhibitine conditions on low-yield soil than Norin 25. 4) Potassium uptake was mostly hindered by organic matter, while some factors in soil hindered mostly posphorus uptake. When the organic matter was added to such soil, the effect of them resulted in multiple interaction. 5) The root activity showed a correlation coeffieient of 0.839, 0.834 and 0.948 at 1% level with the number of root, yield of aerial part and root yield, respectively. At 5% level the root-activity showed correlation-coefficient of 0.751, 0.670 and 0.769 with the uptake of the aerial part of respectively. N, P and K and a correlation-coefficient of 0.729, 0.742 and 0.815 with the uptake of the root of respectively N.P. and K. So especially for K-uptake a high correlation with the root-activity was found. 6) The nitrogen content of the roots in low-yield soil was higher than in high-yield soil, while the content in the upper part showed the reverse. It may suggest ammonium toxicity in the root. In low-yield soil Potassium and Phosphorus content was low in both the root and aerial part, and in the latter particularly in the culm and leaf sheath. 7) The content of reducing sugar, non-recuding sugar, starh and eugar, total carbohydrates in the aerial part of plants in low yield soil was higher than in high yield soil. The content of them, especially of reducing sugar in the roots was lower. It may be caused by abnormal metabolic consumption of sugar in the root. 8) Sulfur content was very high in the aerial part, especially in leaf blade of plants on low yield soil and $P_2O_5/S$ value of the leaf blade was one fifth of that in high yield soil. It suggests a possible toxic effect of sulfate ion on photophosphorization. 9) The high value of $Fe/P_2O_5$ of the aerial part of plants in low yield soil suggests the possible formation of solid $Fe/PO_4$ as a mechanical hindrance for the translocation of nutrients. 10) Translocation of nutrients in the plant was very poor and most nutrients were accumulated in the root in low yield soil. That might contributed to the lack of energy sources and mechanical hindrance. 11) The amount of roots in high yield soil, was greater than that in low yield soil. The in high-yield soil was deep, distribution of the roots whereas in the low-yield soil the root-distribution was mainly in the top-layer. Without application of Nitrogen fertilizer the roots were mainly distributed in the upper 7cm. of topsoil. With 120 kg N/ha. root were more concentrated in the layer between 7cm. and 14cm. depth. The amount of roots increased with the amount of fertilizer applied.

  • PDF