• Title/Summary/Keyword: J hook

Search Result 42, Processing Time 0.026 seconds

Effect of Plant Growth Regulator Treatments on the Growth and Lateral Root Formation in Soybean Sprouts - I. Effect of Plant Growth Regulator Treatments on the Growth in Soybean Sprouts (생장조절물질(生長調節物質) 처리(處理)가 콩나물의 생육(生育) 및 세근발생(細根發生)에 미치는 영향(影響) - I. 생장조절물질(生長調節物質)의 단용(單用) 및 혼용처리(混用處理)가 콩나물의 생육(生育)에 미치는 효과(效果))

  • Kang, C.K.;Lee, J.M.;Saka, H.
    • Korean Journal of Weed Science
    • /
    • v.9 no.1
    • /
    • pp.56-68
    • /
    • 1989
  • aA series of experiments were conducted to investigate the effect of plant growth regulator treatments on the growth and lateral root formation in soybean sprouts in order to establish the effective method of producing root-less or short-rooted soybean sprouts with larger diameter in the hypocotyl. Major results can be summarized as follows. 1. Soybean sprouts showed fairly uniform elongation rate from 3 to g days after imbibition with daily increase of 3.8cm. The speed of elongation of hypocotyl was reduced whereas that of root accelerated 7 days after imbibition. Lateral roots began to emerge fairly evenly from 5 to 9 days after imbibition with a daily increase of 4.4. 2. Auxins(IAA, IBA, NAA, 2,4-D) inhibited hypocotyl elongation and formation of lateral roots and increased hypocotyl diameter without influencing root length and hook diameter at higher concentrations. The dry weight of cotyledon was increased significantly as compared to that of hypocotyl and root. Among the tested auxins, 2, 4-D was the most effective. 3. BA and 4PU-30 significantly reduced elongation of hypocotyl and root and resulted in the biggest diameter of hypocotyl when treated at higher concentrations. The lowest effective concentration of BA to prevent the formation of larval gal roots was 12.5ppm. The formation of lateral roots could be completely prevented by BA and 4PU-30 treatment but kinetin, zeatin, zeatin riboside resulted in many lateral roots and increased thickness of soybean sprouts with little influence. Cotyledon deformation was found in soybean sprouts treated by 4PU-30. 4. 2, 4-D was the most effective for increasing the hypocotyl diameter while 4PU-30 was the most effective for reducing no. of lateral roots. 5. It can be concluded that among the plant growth regulators tested, BA was effective in reducing root length and increasing hypocotyl diameter. BA 12.5 ppm or 15 ppm may thus be the more practical for production of soybean sprouts. 6. ABA showed no significant effect of growth parameter, however ABA 25 ppm inhibited only no of lateral roots with little influence on the growth of seedling. 7. Ethephon inhibited the elongation of hypocotyl and root and increased hypocotyl diameter at higher concentrations. 8. The combined effect of cytokinins and ethephon was very similar to result of BA treatment alone. As the ethephon concentration increased, hypocotyl diameter and dry weight of cotyledon tended to increase.

  • PDF

A case of simultaneously identified glycogen storage disease and mucopolysaccharidosis (당원병과 뮤코다당체침착증이 동시에 발견된 증례 1예)

  • Lee, Ju Young;Shim, Jeong Ok;Yang, Hye Ran;Chang, Ju Young;Shin, Choong Ho;Ko, Jae Sung;Seo, Jeong Kee;Kim, Woo Sun;Kang, Gyeong Hoon;Song, Jeong Han;Kim, Jong Won
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.6
    • /
    • pp.650-654
    • /
    • 2008
  • Glycogen storage disease (GSD) and mucopolysaccharidosis (MPS) are both independently inherited disorders. GSD is a member of a group of genetic disorders involving enzymes responsible for the synthesis and degradation of glycogen. GSD leads to abnormal tissue concentrations of glycogen, primarily in the liver, muscle, or both. MPS is a member of a group of inherited lysosomal storage diseases, which result from a deficiency in specific enzymatic activities and the accumulation of partially degraded acid mucopolysaccharides. A case of a 16-month-old boy who presented with hepatomegaly is reported. The liver was four finger-breadth-palpable. A laboratory study showed slightly increased serum AST and ALT levels. The liver biopsy showed microscopic features compatible with GSD. The liver glycogen content was 9.3% which was increased in comparison with the reference limit, but the glucose-6-phosphatase activity was within the normal limit. These findings suggested GSD other than type I. Bony abnormalities on skeletal radiographs, including an anterior beak and hook-shaped vertebrae, were seen. The mucopolysaccharide concentration in the urine was increased and the plasma iduronate sulfatase activity was low, which fulfilled the diagnosis criteria for Hunter syndrome (MPS type II). To the best of the authors' knowledge, this is the first case of GSD and Hunter syndrome being identified at the same time.