• 제목/요약/키워드: Ito process

검색결과 411건 처리시간 0.027초

Study of Magnetic Field Shielded Sputtering Process as a Room Temperature High Quality ITO Thin Film Deposition Process

  • Lee, Jun-Young;Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.288-289
    • /
    • 2011
  • Indium Tin Oxide (ITO) is a typical highly Transparent Conductive Oxide (TCO) currently used as a transparent electrode material. Most widely used deposition method is the sputtering process for ITO film deposition because it has a high deposition rate, allows accurate control of the film thickness and easy deposition process and high electrical/optical properties. However, to apply high quality ITO thin film in a flexible microelectronic device using a plastic substrate, conventional DC magnetron sputtering (DMS) processed ITO thin film is not suitable because it needs a high temperature thermal annealing process to obtain high optical transmittance and low resistivity, while the generally plastic substrates has low glass transition temperatures. In the room temperature sputtering process, the electrical property degradation of ITO thin film is caused by negative oxygen ions effect. This high energy negative oxygen ions(about over 100eV) can be critical physical bombardment damages against the formation of the ITO thin film, and this damage does not recover in the room temperature process that does not offer thermal annealing. Hence new ITO deposition process that can provide the high electrical/optical properties of the ITO film at room temperature is needed. To solve these limitations we develop the Magnetic Field Shielded Sputtering (MFSS) system. The MFSS is based on DMS and it has the plasma limiter, which compose the permanent magnet array (Fig.1). During the ITO thin film deposition in the MFSS process, the electrons in the plasma are trapped by the magnetic field at the plasma limiters. The plasma limiter, which has a negative potential in the MFSS process, prevents to the damage by negative oxygen ions bombardment, and increases the heat(-) up effect by the Ar ions in the bulk plasma. Fig. 2. shows the electrical properties of the MFSS ITO thin film and DMS ITO thin film at room temperature. With the increase of the sputtering pressure, the resistivity of DMS ITO increases. On the other hand, the resistivity of the MFSS ITO slightly increases and becomes lower than that of the DMS ITO at all sputtering pressures. The lowest resistivity of the DMS ITO is $1.0{\times}10-3{\Omega}{\cdot}cm$ and that of the MFSS ITO is $4.5{\times}10-4{\Omega}{\cdot}cm$. This resistivity difference is caused by the carrier mobility. The carrier mobility of the MFSS ITO is 40 $cm^2/V{\cdot}s$, which is significantly higher than that of the DMS ITO (10 $cm^2/V{\cdot}s$). The low resistivity and high carrier mobility of the MFSS ITO are due to the magnetic field shielded effect. In addition, although not shown in this paper, the roughness of the MFSS ITO thin film is lower than that of the DMS ITO thin film, and TEM, XRD and XPS analysis of the MFSS ITO show the nano-crystalline structure. As a result, the MFSS process can effectively prevent to the high energy negative oxygen ions bombardment and supply activation energies by accelerating Ar ions in the plasma; therefore, high quality ITO can be deposited at room temperature.

  • PDF

CMP 공정이 ITO 박막의 전기적.광학적 특성에 미치는 영향 (Electrical and Optical Properties of ITO Thin Film by CMP Process Parameter)

  • 최권우;서용진;이우선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.354-355
    • /
    • 2005
  • Indium tin oxide (ITO) thin film was polished by chemical mechanical polishing (CMP) by the change of process parameters for the improvement of electrical and optical properties of ITO thin film. Light transparent efficiency of ITO thin film was improved after CMP process at the optimized process parameters compared to that before CMP process.

  • PDF

CMP 공정변수에 따른 ITO박막의 전기적.광학적 특성 (Electrical and Optical of Properties ITO Thin Film by CMP Process Parameter)

  • 최권우;김남훈;서용진;이우선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.151-153
    • /
    • 2005
  • Indium tin oxide (ITO) thin film was polished by chemical mechanical polishing (CMP) by the change of process parameters for the improvement of electrical and optical properties of ITO thin film. Light transparent efficiency of ITO thin film was improved after CMP process at the optimized process parameters compared to that before CMP process.

  • PDF

신경회로망을 이용한 ITO 박막 성장 공정의 모형화 (Modeling of Indium Tin Oxide(ITO) Film Deposition Process using Neural Network)

  • 민철홍;박성진;윤능구;김태선
    • 한국전기전자재료학회논문지
    • /
    • 제22권9호
    • /
    • pp.741-746
    • /
    • 2009
  • Compare to conventional Indium Tin Oxide (ITO) film deposition methods, cesium assisted sputtering method has been shown superior electrical, mechanical, and optical film properties. However, it is not easy to use cesium assisted sputtering method since ITO film properties are very sensitive to Cesium assisted equipment condition but their mechanism is not yet clearly defined physically or mathematically. Therefore, to optimize deposited ITO film characteristics, development of accurate and reliable process model is essential. For this, in this work, we developed ITO film deposition process model using neural networks and design of experiment (DOE). Developed model prediction results are compared with conventional statistical regression model and developed neural process model has been shown superior prediction results on modeling of ITO film thickness, sheet resistance, and transmittance characteristics.

저온 E Beam 증착 공정으로 제조된 폴리에테르설폰 유연기판용 ITO 필름 특성 연구 (A Study on Characteristics of Tin-doped Indium Oxide Film for Polyethersulfone Flexible Substrate by Low Temperature E Beam Deposition Process)

  • 류주민;강호종
    • 폴리머
    • /
    • 제36권3호
    • /
    • pp.393-400
    • /
    • 2012
  • 광전소자 유연기판으로 사용되는 폴리에테르설폰(PES) 필름 위에 E beam을 이용하여 저온 증착된 indium tin oxide(ITO) 박막 특성을 살펴보았다. 증착 시 기판 온도가 증가함에 따라 저온 열처리 과정에서 ITO 결정화가 잘 이루어져 면 저항의 감소와 투과도가 증가됨을 알 수 있었다. 증착 시 사용된 산소 가스는 ITO의 결정화를 촉진시켜 면 저항 감소와 투과도 증가에 도움을 줌을 확인하였다. PES 기판 표면 거칠기가 증가될수록 증착된 ITO의 결정화가 잘 이루어지지 않으며 이는 면 저항의 증가 및 투과도의 감소 요인으로 작용함을 알 수 있었다.

RF 마그네트론 스퍼터링법으로 제작된 ITO 박막의 공정압력 변화에 따른 특성 (Properties of ITO thin films deposited by RF magnetron sputtering with process pressure)

  • 정성진;김덕규;김홍배
    • 반도체디스플레이기술학회지
    • /
    • 제9권4호
    • /
    • pp.83-86
    • /
    • 2010
  • The transparent electrode properties of ITO films deposited by RF magnetron sputtering with process pressure were investigated. The ITO thin films was deposited on a glass substrate using a target with 3in diameter sintered at a ratio of $In_2O_3$ : $SnO_2$ (9 : 1). 200-nm-thick ITO thin films were manufactured by various process pressures ($2.0{\times}10^{-2}$, $7.0{\times}10^{-3}$ and $2.0{\times}10^{-3}$ Torr). The optical transmittance and resistivity of the deposited ITO thin films showed a relatively satisfactory result under $10^{-2}$ Torr. For high process pressure, the optical transmittance was below 80%, while for low process pressure, the optical transmittance was above 85%. As a result of of mobility, resistivity and carrier concentration by Hall measurement, we obtained satisfactory properties to apply into a transparent conducting thin film.

고활성 ITO (Indium-Tin Oxide) 나노 분말을 침전법으로 합성시의 공정 변수 및 존재하는 이온의 영향 (Effect of Process Variables and exisisting Ions on Highly Active Nano-sized ITO Powders Prepared by Precipitation Method)

  • 이인규;노봉현
    • 한국분말재료학회지
    • /
    • 제15권6호
    • /
    • pp.450-457
    • /
    • 2008
  • The objectives of this study were the development of a synthesis technique for highly active nanosized ITO powder and the understanding of the reaction mechanisms of the ITO precursors. The precipitation and agglomeration phenomena in ITO and $In_{2}O_{3}$ precursors are very sensitive to reaction temperature, pH, and coexisting ion species. Excessive $Cl^-$ ion and $Sn^{+4}$ ions had a negative effect an synthesizing highly active powders. However, with a relevant stabilizing treatment the shape and size of ITO and $In_{2}O_{3}$ precursors could be controlled and high density sintered products of ITO were obtained. By applying the reprecipitation process (or stabilization technique), highly active ITO and $In_{2}O_{3}$ powders were synthesized. Sintering these powders at $1500^{\circ}C$ for 5 hours produced 97% dense ITO bodies.

ITO 박막의 공정변수에 따른 특성 연구 (Dependance of the Process Parameters on the Characteristic of the ITO Thin Films)

  • 김소라;서정은;김상호
    • 한국표면공학회지
    • /
    • 제37권3호
    • /
    • pp.158-163
    • /
    • 2004
  • ITO thin film was deposited on the glass by RF magnetron sputtering. Dependance of the process parameters such as thickness, target-to-substrate distance, substrate temperature and oxygen partial pressure on the transmittance and electrical resistance of ITO film were investigated. The deposition conditions for getting better optical and electrical ITO characteristics were the 1800-$2300\AA$ thickness, 65mm substrate-to-target distance, $350^{\circ}C$ substrate temperature and 8% oxygen partial pressure. At these conditions, the transmittance and sheet resistance of the ITO film were 83.3% and 77.86Ω/$\square$, respectively.

분무건조법에 의한 ITO 나노분말의 합성과 특성 (Synthesis and Properties of ITO Nano Powders by Spray Drying Process)

  • 허민선;최철진;권대환
    • 한국분말재료학회지
    • /
    • 제11권1호
    • /
    • pp.22-27
    • /
    • 2004
  • The Indium Tin Oxide(ITO) nano powders were prepared by spray drying and heat treatment process. The liquid solution dissolved Indium and Tin salts was first spray dried to prepare chemically homogeneous recursor powders at the optimum spray drying conditions. Subsequently, the precursor powders were subjected to eat treatment process. The nano size ITO powders was synthesized from the previous precursor powders and the npuities also were decreased with increasing heat treatment temperature. Furthermore, the lattice parameter of TO nano powders was increased by doping Tin into Indium with increasing heat treatment temperature. The par icle size of the resultant ITO powders was about 20∼50nm and chemical composition was composed of In:Sn =86:10 wt.% at 80$0^{\circ}C$.

ITO 박막 형성을 위한 나노초 레이저 소결 공정 (Nanosecond Laser Sintering Process for Fabricating ITO film)

  • 박태순;김동식
    • 한국레이저가공학회지
    • /
    • 제17권1호
    • /
    • pp.13-16
    • /
    • 2014
  • Indium Tin Oxide (ITO) has been used widely for transparent conducting thin films. In this work, the feasibility of a laser sintering process to fabricate ITO thin films on flexible substrates is examined. Nanoparticles of ~10 nm were spin coated on a Si wafer and then sintered by a KrF excimer laser. The sintered structure was characterized by scanning electron microscopy. Polycrystalline structures were fabricated by the process without thermally damaging the substrate. The electrical resistivity of the film was reduced to ~ 1/1000 of the initial value. This work demonstrates that nanosecond laser sintering of ITO particles can be a useful tool to fabricate ITO films on various flexible substrates.

  • PDF