• Title/Summary/Keyword: Iterative-incremental approach

Search Result 22, Processing Time 0.022 seconds

An Incremental, Iterative and Interative Ontology Matching Approach

  • Wagner, Fernando;Macedo, Jose A.F.;Loscio, Bernadette
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.4
    • /
    • pp.357-363
    • /
    • 2012
  • Ontologies are being used in order to define common vocabularies to describe the elements of schemas involved in a particular application. The problem of finding correspondences between ontologies concepts, called ontology matching, consists in the discovery of correspondences between terms of vocabularies (represented by ontologies) used by various applications. The majority of solutions proposed in the literature, despite being fully automatic, has heuristic nature and may produce nonsatisfactory results. The problem intensifies when dealing with large data sources. The goal of this paper is to propose a method for generation and incremental refinement of correspondences between ontologies. The proposed approach uses filtering techniques, as well as user feedback to support the generation and refinement of such matches. For validation purposes, a tool was developed and some experiments were conducted.

Period doubling of the nonlinear dynamical system of an electrostatically actuated micro-cantilever

  • Chen, Y.M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.743-763
    • /
    • 2014
  • The paper presents an investigation of the nonlinear dynamical system of an electrostatically actuated micro-cantilever by the incremental harmonic balance (IHB) method. An efficient approach is proposed to tackle the difficulty in expanding the nonlinear terms into truncated Fourier series. With the help of this approach, periodic and multi-periodic solutions are obtained by the IHB method. Numerical examples show that the IHB solutions, provided as many as harmonics are taken into account, are in excellent agreement with numerical results. In addition, an iterative algorithm is suggested to accurately determine period doubling bifurcation points. The route to chaos via period doublings starting from the period-1 or period-3 solution are analyzed according to the Floquet and the Feigenbaum theories.

An improved radius-incremental-approach of stress and displacement for strain-softening surrounding rock considering hydraulic-mechanical coupling

  • Zou, Jin-Feng;Wei, Xing-Xing
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.59-69
    • /
    • 2018
  • This study focused on the mechanical and hydraulic characteristics of underwater tunnels based on Mohr-Coulomb (M-C), Hoek-Brown (H-B) and generalized H-B failure criteria. An improved approach for calculating stress, displacement and plastic radius of the circular tunnel considering hydraulic-mechanical coupling was developed. The innovation of this study was that the radius-incremental-approach was reconstructed (i.e., the whole plastic zone is divided into a finite number of concentric annuli by radius), stress and displacement of each annulus were determined in terms of numerical method and Terzaghi's effective stress principle. The validation of the proposed approach was conducted by comparing with the results in Brown and Bray (1982) and Park and Kim (2006). In addition, the Rp-pin curve (plastic radius-internal supporting pressure curve) was obtained using the numerical iterative method, and the plastic radius of the deep-buried tunnel could be obtained by interpolation method in terms of the known value of internal supporting pressure pin. Combining with the theories in Carranza and Fairhurst (2000), the improved technique for assessing the reliability of the tunnel support was proposed.

An Learning Algorithm to find the Optimized Network Structure in an Incremental Model (점증적 모델에서 최적의 네트워크 구조를 구하기 위한 학습 알고리즘)

  • Lee Jong-Chan;Cho Sang-Yeop
    • Journal of Internet Computing and Services
    • /
    • v.4 no.5
    • /
    • pp.69-76
    • /
    • 2003
  • In this paper we show a new learning algorithm for pattern classification. This algorithm considered a scheme to find a solution to a problem of incremental learning algorithm when the structure becomes too complex by noise patterns included in learning data set. Our approach for this problem uses a pruning method which terminates the learning process with a predefined criterion. In this process, an iterative model with 3 layer feedforward structure is derived from the incremental model by an appropriate manipulations. Notice that this network structure is not full-connected between upper and lower layers. To verify the effectiveness of pruning method, this network is retrained by EBP. From this results, we can find out that the proposed algorithm is effective, as an aspect of a system performence and the node number included in network structure.

  • PDF

Lateral vibration control of a low-speed maglev vehicle in cross winds

  • Yau, J.D.
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.263-283
    • /
    • 2012
  • This paper presents a framework of nonlinear dynamic analysis of a low-speed moving maglev (magnetically levitated) vehicle subjected to cross winds and controlled using a clipped-LQR actuator with time delay compensation. A four degrees-of-freedom (4-DOFs) maglev-vehicle equipped with an onboard PID (Proportional-Integral-Derivative) controller traveling over guideway girders was developed to regulate the electric current and control voltage. With this maglev-vehicle/guideway model, dynamic interaction analysis of a low-speed maglev vehicle with guideway girders was conducted using an iterative approach. Considering the time-delay issue of unsynchronized tuning forces in control process, a clipped-LQR actuator with time-delay compensation is developed to improve control effectiveness of lateral vibration of the running maglev vehicle in cross winds. Numerical simulations demonstrate that although the lateral response of the maglev vehicle moving in cross winds would be amplified significantly, the present clipped-LQR controller exhibits its control performance in suppressing the lateral vibration of the vehicle.

ON THE TREATMENT OF DUCTILE FRACTURE BY THE LOCAL APPROACH CONCEPT IN CONTINUUM DAMAGE MECHANICS : THEORY AND EXAMPLE

  • Kim, Seoung-Jo;Kim, Jin-Hee;Kim, Wie-Dae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.2 no.1
    • /
    • pp.31-50
    • /
    • 1996
  • In this paper, a finite element analysis based on the local approach concept to fracture in the continuum damage mechanics is performed to analyze ductile fracture in two dimensional quasi-static state. First an isotropic damage model based on the generalized concept of effective stress is proposed for structural materials in the context of large deformation. In this model, the stiffness degradation is taken as a measure of damage and so, the fracture phenomenon can be explained as the critical deterioration of stiffness at a material point. The modified Riks' continuation technique is used to solve incremental iterative equations. Crack propagation is achieved by removing critically damaged elements. The mesh size sensitivity analysis and the simulation of the well known shearing mode failure in plane strain state are carried out to verify the present formulation. As numerical examples, an edge cracked plate and the specimen with a circular hole under plane stress are taken. Load-displacement curves and successively fractured shapes are shown. From the results, it can be concluded that the proposed model based on the local approach concept in the continuum damage mechanics may be stated as a reasonable tool to explain ductile fracture initiation and crack propagation.

Vibration reduction for interaction response of a maglev vehicle running on guideway girders

  • Wang, Y.J.;Yau, J.D.;Shi, J.;Urushadze, S.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.163-173
    • /
    • 2020
  • As a vehicle moves on multiple equal-span beams at constant speed, the running vehicle would be subjected to repetitive excitations from the beam vibrations under it. Once the exciting frequency caused by the vibrating beams coincides with any of the vehicle's frequencies, resonance would take place on the vehicle. A similar resonance phenomenon occurs on a beam subject to sequential moving loads with identical axle-intervals. To reduce both resonant phenomena of a vehicle moving on guideway girders, this study proposed an additional feedback controller based the condensed virtual dynamic absorber (C-VDA) scheme. This condensation scheme has the following advantages: (1) the feedback tuning gains required to adapt the control currents or voltages are directly obtained from the tuning forces of the VDA; (2) the condensed VDA scheme does not need additional DoFs of the absorber to control the vibration of the maglev-vehicle/guideway system. By decomposing the maglev vehicle-guideway coupling system into two sub-systems (the moving vehicle and the supporting girders), an incremental-iterative procedure associated with the Newmark method is presented to solve the two sets of sub-system equations. From the present studies, the proposed C-VDA scheme is a feasible approach to suppress the interaction response for a maglev vehicle in resonance moving on a series of guideway girders.

Analysis of impact response and damage in laminated composite cylindrical shells undergoing large deformations

  • Kumar, Surendra
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.349-364
    • /
    • 2010
  • The impact behaviour and the impact-induced damage in laminated composite cylindrical shell subjected to transverse impact by a foreign object are studied using three-dimensional non-linear transient dynamic finite element formulation. A layered version of 20 noded hexahedral element incorporating geometrical non-linearity is developed based on total Langragian approach. Non-linear system of equations resulting from non-linear strain displacement relation and non-linear contact loading are solved using Newton-Raphson incremental-iterative method. Some example problems of graphite/epoxy cylindrical shell panels are considered with variation of impactor and laminate parameters and influence of geometrical non-linear effect on the impact response and the resulting damage is investigated.

Verifying Ontology Increments through Domain and Schema Independent Verbalization

  • Vidanage, Kaneeka;Noor, Noor Maizura Mohamad;Mohemad, Rosmayati;Bakar, Zuriana Aby
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.34-39
    • /
    • 2021
  • Collaborative ontology construction is the latest trend in developing ontologies. In this technique domain specialists and ontologists need to work together. Because of the complexity associated with ontology construction, it's done in an iterative and incremental fashion. After each iteration, an ontology increment will be produced. Current ontology increment is always an enhanced version of the previous increment. Each ontology increment has to be verified for its accuracy. Domain specialists' contribution is very significant in accomplishing this necessity. Unfortunately, non-computing domain specialists (i.e. medical doctors, bankers, lawyers) are illiterate on semantic concepts. Therefore, validating the accuracy of the ontology increment is a complex hurdle for them. This research proposes verbalization approach to address this complexity.

Non linear soil structure interaction of space frame-pile foundation-soil system

  • Chore, H.S.;Ingle, R.K.;Sawant, V.A.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.95-110
    • /
    • 2014
  • The study deals with physical modeling of space frame-pile foundation and soil system using finite element models. The superstructure frame is analyzed using complete three-dimensional finite element method where the component of the frame such as slab, beam and columns are descretized using 20 node isoparametric continuum elements. Initially, the frame is analyzed assuming the fixed column bases. Later the pile foundation is worked out separately wherein the simplified models of finite elements such as beam and plate element are used for pile and pile cap, respectively. The non-linear behaviour of soil mass is incorporated by idealizing the soil as non-linear springs using p-y curve along the lines similar to that by Georgiadis et al. (1992). For analysis of pile foundation, the non-linearity of soil via p-y curve approach is incorporated using the incremental approach. The interaction analysis is conducted for the parametric study. The non-linearity of soil is further incorporated using iterative approach, i.e., secant modulus approach, in the interaction analysis. The effect the various parameters of the pile foundation such as spacing in a group and configuration of the pile group is evaluated on the response of superstructure owing to non-linearity of the soil. The response included the displacement at the top of the frame and bending moment in columns. The non-linearity of soil increases the top displacement in the range of 7.8%-16.7%. However, its effect is found very marginal on the absolute maximum moment in columns. The hogging moment decreases by 0.005% while sagging moment increases by 0.02%.