• Title/Summary/Keyword: Iterative metal artifact reduction (iMAR) algorithm

Search Result 2, Processing Time 0.022 seconds

The feasibility of algorithm for iterative metal artifact reduction (iMAR) using customized 3D printing phantom based on the SiPM PET/CT scanner (SiPM PET/CT에서 3D 프린팅 기반 자체제작한 팬텀을 이용한 iMAR 알고리즘 유용성 평가에 관한 연구)

  • Min-Gyu Lee;Chanrok Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.35-40
    • /
    • 2024
  • Purpose: To improve the image quality in positron emission tomography (PET), the attenuation correction technique based on the computed tomography (CT) data is important process. However, the artifact is caused by metal material during PET/CT scan, and the image quality is degraded. Therefore, the purpose of this study was to evaluate image quality according to with and without iterative metal artifact reduction (iMAR) algorithm using customized 3D printing phantom. Materials and Methods: The Hoffman and Derenzo phantoms were designed. To protect the gamma ray transmission and express the metal portion, lead substance was located to the surface. The SiPM based PET/CT was used for acquisition of PET images according to application with and without iMAR algorithm. The quantitative methods were used by signal to noise ratio (SNR), coefficient of variation (COV), and contrast to noise ratio (CNR). Results and Discussion: The results shows that the image quality applying iMAR algorithm was higher 1.15, 1.19, and 1.11 times than image quality without iMAR algorithm for SNR, COV, and CNR. Conclusion: In conclusion, the iMAR algorithm was useful for improvement of image quality by reducing the metal artifact lesion.

Comparison of the Quality of Various Polychromatic and Monochromatic Dual-Energy CT Images with or without a Metal Artifact Reduction Algorithm to Evaluate Total Knee Arthroplasty

  • Hye Jung Choo;Sun Joo Lee;Dong Wook Kim;Yoo Jin Lee;Jin Wook Baek;Ji-yeon Han;Young Jin Heo
    • Korean Journal of Radiology
    • /
    • v.22 no.8
    • /
    • pp.1341-1351
    • /
    • 2021
  • Objective: To compare the quality of various polychromatic and monochromatic images with or without using an iterative metal artifact reduction algorithm (iMAR) obtained from a dual-energy computed tomography (CT) to evaluate total knee arthroplasty. Materials and Methods: We included 58 patients (28 male and 30 female; mean age [range], 71.4 [61-83] years) who underwent 74 knee examinations after total knee arthroplasty using dual-energy CT. CT image sets consisted of polychromatic image sets that linearly blended 80 kVp and tin-filtered 140 kVp using weighting factors of 0.4, 0, and -0.3, and monochromatic images at 130, 150, 170, and 190 keV. These image sets were obtained with and without applying iMAR, creating a total of 14 image sets. Two readers qualitatively ranked the image quality (1 [lowest quality] through 14 [highest quality]). Volumes of high- and low-density artifacts and contrast-to-noise ratios (CNRs) between the bone and fat tissue were quantitatively measured in a subset of 25 knees unaffected by metal artifacts. Results: iMAR-applied, polychromatic images using weighting factors of -0.3 and 0.0 (P-0.3i and P0.0i, respectively) showed the highest image-quality rank scores (median of 14 for both by one reader and 13 and 14, respectively, by the other reader; p < 0.001). All iMAR-applied image series showed higher rank scores than the iMAR-unapplied ones. The smallest volumes of low-density artifacts were found in P-0.3i, P0.0i, and iMAR-applied monochromatic images at 130 keV. The smallest volumes of high-density artifacts were noted in P-0.3i. The CNRs were best in polychromatic images using a weighting factor of 0.4 with or without iMAR application, followed by polychromatic images using a weighting factor of 0.0 with or without iMAR application. Conclusion: Polychromatic images combined with iMAR application, P-0.3i and P0.0i, provided better image qualities and substantial metal artifact reduction compared with other image sets.